1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ad-work [718]
3 years ago
13

El tiempo hasta que falle un sistema informático sigue una distribución Exponencial con media de 600hs. (Utilice 3 decimales par

a sus respuestas) Si el sistema ha estado funcionando sin fallas durante 400hs ¿cuál es la probabilidad de que funcione por lo menos 200hs más?
Engineering
1 answer:
Lesechka [4]3 years ago
7 0

Answer:

La probabilidad pedida es 0.717

Explanation:

Primero comencemos definiendo la variable aleatoria. Para nuestro problema, la variable aleatoria es la siguiente :

X: '' El tiempo (en horas) hasta que falle un sistema informático ''

La variable aleatoria X será entonces una variable aleatoria continua.

Sabemos que sigue una distribución exponencial con una media de 600 hs.

Esto se escribe :

X ~ ε ( λ ) (I)

En donde λ es igual a la inversa de la media. Esto se escribe :

λ =\frac{1}{E(X)}

En donde E(X) es la media de la variable. Por ende, si reemplazamos los datos del ejercicio obtenemos ⇒

λ =\frac{1}{E(X)} ⇒ λ =\frac{1}{600}

Si reemplazamos el valor de λ en (I) obtenemos :

X ~ ε (\frac{1}{600})

La función de distribución de X (por ser una variable aleatoria exponencial) es :

F_{X}(x)=P(X\leq x)=  1 - e ^ ( - λx) con x > 0 y F_{X}(x)=0 en caso contrario.

Si reemplazamos el valor de λ en la función de distribución de X obtenemos :

F_{X}(x)=P(X\leq x)=1-e^{-\frac{x}{600}}  

Dado que la variable aleatoria X se distribuye de manera exponencial, el hecho de saber que el sistema ha estado funcionando sin fallas durante 400 hs no nos aporta ninguna información sobre lo que ocurrirá después. Esta característica se conoce como propiedad de perdida de memoria de la variable aleatoria exponencial. Entonces, la probabilidad pedida se reduce a calcular :

P(X>200)    

Dado que saber que el sistema ha estado funcionando sin fallas durante 400 hs no nos dice nada sobre lo que ocurrirá instantes posteriores a esas 400 hs.

Calculamos entonces la probabilidad pedida :

P(X>200)=1-P(X\leq 200)=1-F_{X}(200)=1-(1-e^{-\frac{200}{600}})=e^{-\frac{1}{3}}=0.717

You might be interested in
What are the three elementary parts of a vibrating system?
zhenek [66]

Answer:

the three part are mass, spring, damping

Explanation:

vibrating system consist of three elementary system namely

1) Mass - it is a rigid body due to which system experience vibration and kinetic energy due to vibration is directly proportional to velocity of the body.

2) Spring -  the part that has elasticity and help to hold mass

3) Damping - this part considered to have zero mass and  zero elasticity.

7 0
3 years ago
Technician A says that the carpet padding is designed to help reduce noise and vibrations.
Firdavs [7]

Answer:

Technicians A is right for the answer

4 0
3 years ago
I gave 15 min to finish this java program
lisov135 [29]

Answer:

class TriangleNumbers

{

public static void main (String[] args)

{

 for (int number = 1; number <= 10; ++number) {

  int sum = 1;

  System.out.print("1");

  for (int summed = 2; summed <= number; ++summed) {

   sum += summed;

   System.out.print(" + " + Integer.toString(summed));

  }

  System.out.print(" = " + Integer.toString(sum) + '\n');

 }

}

}

Explanation:

We need to run the code for each of the 10 lines. Each time we sum  numbers from 1 to n. We start with 1, then add numbers from 2 to n (and print the operation). At the end, we always print the equals sign, the sum and a newline character.

4 0
3 years ago
Water enters a centrifugal pump axially at atmospheric pressure at a rate of 0.12 m3
goldenfox [79]

Answer:

Water enters a centrifugal pump axially at atmospheric pressure at a rate of 0.12 m3/s and at a velocity of 7 m/s, and leaves in the normal direction along the pump casing, as shown in Fig. PI3-39. Determine the force acting on the shaft (which is also the force acting on the bearing of the shaft) in the axial direction.

Step-by-step solution:

Step 1 of 5

Given data:-

The velocity of water is .

The water flow rate is.

3 0
3 years ago
Identify which sound type each line contains.
nydimaria [60]

Answer:i can not see it

Explanation:

4 0
3 years ago
Other questions:
  • At an impaired driver checkpoint, the time required to conduct the impairment test varies (according to an exponential distribut
    6·1 answer
  • Which career related to architecture deals with the planning of entire cities and focuses on designing and arranging buildings,
    9·2 answers
  • Water is the working fluid in a Rankine cycle. Superheated vapor enters the turbine at 8 MPa, 560°C and the turbine exit pressur
    13·1 answer
  • Water is flowing in a metal pipe. The pipe OD (outside diameter) is 61 cm. The pipe length is 120 m. The pipe wall thickness is
    9·1 answer
  • Consider the gas carburizing of a gear of 1018 steel (0.18 wt %) at 927°C (1700°F). Calculate the time necessary to increase the
    12·1 answer
  • A motor cycle is moving up an incline of 1 in 30 at a speed of 80 km/h,and then suddenly the engine shuts down.The tractive resi
    11·1 answer
  • In a certain balanced three phase system each line current is a 5a and each line voltage is 220v . What is the approximate real
    15·1 answer
  • Di hola por 10 puntos
    8·1 answer
  • What is included in the environmental impact assessment process, such as the use of geographic information systems?
    15·1 answer
  • The ______ number of a flow is defined as the ratio of the speed of flow to the speed of sound in the flowing fluid.
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!