A mineral is a naturally occurring, inorganic solid with a definite chemical composition and a crystalline structure formed by geological processes.
A rock is an aggregate of one or more minerals. It may also contain organic remains and mineraloids apart from regular mineral formations. Since rocks vary in their mineral and chemical composition, they are classified according to the process of their formation.
Answer:
v = √2G / R
Explanation:
For this problem we use energy conservation, the energy initiated is potential and kinetic and the final energy is only potential (infinite r)
Eo = K + U = ½ m1 v² - G m1 m2 / r1
Ef = - G m1 m2 / r2
When the body is at a distance R> Re, for the furthest point (r2) let's call it Rinf
Eo = Ef
½ m1v² - G m1 / R = - G m1 / R
v² = 2G (1 / R - 1 / Rinf)
If we do Rinf = infinity 1 / Rinf = 0
v = √2G / R
Ef = = - G m1 m2 / R
The mechanical energy is conserved
Em = -G m1 / R
Em = - G m1 / R
R = int ⇒ Em = 0
Answer:
0.015 m/s2
Explanation:
Using Newtons 2nd law.
F = ma where F = Force applied, m = mass of the object and a = acceleration acquired.
So substitute the values in SI units.
m = kg
Therefore F = 0.003×5 = 0.015 m/s2
Answer:
v = 2,99913 10⁸ m / s
Explanation:
The velocity of propagation of a wave is
v = λ f
in the case of an electromagnetic wave in a vacuum the speed that speed of light
v = c
When the wave reaches a material medium, it is transmitted through a resonant type process, whereby the molecules of the medium vibrate at the same frequency as the wave, as the speed of the wave decreases the only way that they remain the relationship is that the donut length changes in the material medium
λ = λ₀ / n
where n is the index of refraction of the material medium.
Therefore the expression is
v =
Let's look for the frequency of blue light in a vacuum
f =
f =
f = 6.667 10¹⁴ Hz
the refractive index of air is tabulated
n = 1,00029
let's calculate
v = 450 10-9 / 1,00029 6,667 1014
v = 2,99913 10⁸ m / s
we can see that the decrease in speed is very small
If a negatively charged object is used to charge a neutral object by induction, then the neutral object will acquire a positive charge. And if a positively charged object is used to charge a neutral object by induction, then the neutral object will acquire a negative charge.