Answer:
<u>Principal</u><u> </u><u>focus</u><u> </u><u>of</u><u> </u><u>concav</u><u>e</u><u> </u><u>lens</u><u> </u><u>-</u><u> </u>
★ The point at which rays parallel to principal axis coming from infinity appear to converge after being refracted from concave lens is called the principal focus of concave lens.
<em><u>_</u></em><em><u>_</u></em><em><u>_</u></em><em><u>_</u></em><em><u>_</u></em><em><u>_</u></em><em><u>_</u></em><em><u>_</u></em><em><u>_</u></em><em><u>_</u></em><em><u>_</u></em><em><u>_</u></em><em><u>_</u></em><em><u>_</u></em><em><u>_</u></em><em><u>_</u></em><em><u>_</u></em><em><u>_</u></em><em><u>_</u></em><em><u>_</u></em><em><u>_</u></em><em><u>_</u></em><em><u>_</u></em><em><u>_</u></em>
• <u>Additional</u><u> information</u><u> </u><u>-</u><u> </u>
★ Principal focus - A number of rays parallel to the principal axis after reflection from a concave mirror meet at a point on the principal axis or appear to come from a point after reflection from a convex mirror on the principal axis. This is called principal focus.
Answer:
1000 N
Explanation:
An impulse results in a change of momentum
FΔt = mΔv
F = 0.001 kg(1000 - 0) m/s / 0.001 s = 1000 N
The correct answer is option B, representational
All the painters in Peale family were involved in paintings which represent the day today life activities or were portraits or mimic some natural forms.
Charles Willson Peale , the head of the Peale family was known for painting sixty portraits of the first American president, George Washington. He also painted portraits of portraits of notable people of the society such as Benjamin Franklin, Thomas Jefferson etc.
Most of the paintings of peale family were based on the theme of family, art and science. Six of Peale’s son were known for their renaissance paintings. His oldest son Raphelle was known for still life paintings.
Titian Ramsay Peale, Charles’ youngest son was a naturalist painter.
Electromagnetic radiation is an energy that is known as light. so electromagnetic radiation will have the same speed as the speed of light which is 3 x 10^8 m/s. so the distance it travel at 55 x 10^-6 s is:
D = ( 3 x 10^8 m/s ) ( 55 x 10^-6 s )
D = 16500 m
<span>Earth (and hence the observer) moves.</span>