Answer:
See the answers below
Explanation:
In this problem, we must be clear about the concept of weight. Weight is defined as the product of mass by gravitational acceleration.
We must be clear that the mass is always preserved, that is, the mass of 15 [kg] will always be the same regardless of the planet where they are.

where:
W = weight [N] (units of Newtons)
m = mass = 15 [kg]
g = gravity acceleration [m/s²]
Since we have 9 places with different gravitational acceleration, then we calculate the weight in each of these nine places.
<u>Mercury</u>
<u />
<u />
<u>Venus</u>
<u />
<u />
<u>Moon</u>
<u />
<u />
<u>Mars</u>
![w_{mars}=15*3.7\\w_{mars}=55.5 [N]](https://tex.z-dn.net/?f=w_%7Bmars%7D%3D15%2A3.7%5C%5Cw_%7Bmars%7D%3D55.5%20%5BN%5D)
<u>Jupiter</u>
<u />
<u />
<u>Saturn</u>
<u />
<u />
<u>Uranus</u>
<u />
<u />
<u>Neptune</u>
<u />
<u />
<u>Pluto</u>
<u />
<u />
Pressure=hrg
pressure is great at the bottom because the weight lf water exerts pressure below the container due to the gravitational pull of the earth.
Answer:
aerodynamics
Explanation:
if an object like a car is going 200 mph at max speed and then the car gets aerodynamic or smoothed to the point that air can get by the car it could end up going another 20 mph faster
Mass is the amount of matter in an object whereas weight is the force of gravity acting on the mass of an object. Different planets exert a different force of gravity on an object-meaning that an object's weight will change depending on the force of gravity acting on it, but it's mad will remain unchanged.