Answer:
c. both have same energy
Explanation:
The complete question is
suppose you have two cans, one with milk, and the other with refried beans. The cans have essentially the same size, shape, and mass. If you release both cans at the same time, on a downhill ramp, which can has more energy at the bottom of the ramp? ignore friction and air resistance..
a. can with beans
b. can with milk
c. both have same energy
please explain your answer
Since both cans have the same size, shape, and mass, and they are released at the same height above the ramp, they'll possess the same amount of mechanical energy. This is because their mechanical energy, which is the combination of their potential and kinetic energy are both dependent on their mass. Also, having the same physical quantities like their size and shape means that they will experience the same environmental or physical factors, which will be balanced for both.
Answer:
B) 
Explanation:
The electric force between charges can be determined by;
F = 
Where: F is the force, k is the Coulomb's constant,
is the value of the first charge,
is the value of the second charge, r is the distance between the centers of the charges.
Let the original charge be represented by q, so that;
= 2q
= 
So that,
F = 
x 
= 2q x
x 
=
x 
=
x 
F =
x 
The electric force between the given charges would change by
.
A large male cougar living in the Cascade Mountains kills a deer or elk every 9 to 12 days, eating up to 20 pounds at a time and burying the rest for later.Except for females with young, cougars are lone hunters that wander between places frequented by their prey, covering as much as 15 miles in a single night.Cougars rely on short bursts of speed to ambush their prey. A cougar may stalk an animal for an hour or more
hope this helps in any way ! :)
Answer:
Taking gravity to be 9.8m/s2, The velocity is 24.5m/s2.
Taking gravity to be 10m/s2, The velocity is 25m/s2.
Explanation:
According the first formula of motion under the influence of gravity for upward motion, v=u-gt, where v=final velocity, u=initial velocity, and t= time taken.
Here the time taken for the ball to reach the maximum point is half of 5, which is 2.5 seconds.
And v is 0, since at the maximum point gravity slows down the velocity to 0.
Finding the initial velocity,
v=u-gt
0=u-10(2.5)
u=10(2.5)
u=25m/s