Answer:
Rs. 432*10^3 (In kilowatts per hour)
I hope it will be useful.
Question:
A wire 2.80 m in length carries a current of 5.20 A in a region where a uniform magnetic field has a magnitude of 0.430 T. Calculate the magnitude of the magnetic force on the wire assuming the following angles between the magnetic field and the current.
(a)60 (b)90 (c)120
Answer:
(a)5.42 N (b)6.26 N (c)5.42 N
Explanation:
From the question
Length of wire (L) = 2.80 m
Current in wire (I) = 5.20 A
Magnetic field (B) = 0.430 T
Angle are different in each part.
The magnetic force is given by

So from data

Now sub parts
(a)

(b)

(c)

Sewage. If thats not it, then I need to see your choices. :)
We know that arc length (x(t)) is given with the following formula:

Where r is the radius of the barrel. We must keep in mind that as barrel rolls its radius decreases because less and less tape is left on it.
If we say that the thickness of the tape is D then with every full circle our radius shrinks by d. We can write this down mathematically:

When we plug this back into the first equation we get:

We must solve this quadratic equation.
The final solution is:

It is rather complicated solution. If we asume that the tape has no thickness we get simply:
Answer:
they rise in temperature
Explanation:
when there being compressed theres more pressure causing heat