1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
HACTEHA [7]
3 years ago
14

Under the influence of its drive force, a snowmobile is moving at a constant velocity along a horizontal patch of snow. When the

drive force is shut off, the snowmobile coasts to a halt. The snowmobile and its rider have a mass of 128 kg. Under the influence of a drive force of 195 N, it is moving at a constant velocity whose magnitude is 5.90 m/s. The drive force is then shut off. Find (a) the distance in which the snowmobile coasts to a halt and (b) the time required to do so.
Physics
1 answer:
balandron [24]3 years ago
7 0

Answer:

a) Δx = 11.6 m

b) t = 3.9 s

Explanation:

a)

  • Since the snowmobile is moving at constant speed, and the drive force is 195 N, this means that thereis another force equal and opposite acting on it, according to Newton's 2nd Law, due to there is no acceleration present in the horizontal direction .
  • This force is just the force of kinetic friction, and is equal to -195 N (assuming the positive direction as the direction of the movement).
  • Once the drive force is shut off, the only force acting on the snowmobile remains the friction force.
  • According Newton's 2nd Law, this force is causing a negative acceleration (actually slowing down the snowmobile) that can be found as follows:

       a = \frac{F_{fr} }{m} = \frac{-195N}{128kg} = -1.5 m/s2 (1)

  • Assuming the friction force keeps constant, we can use the following kinematic equation in order to find the distance traveled under this acceleration before coming to an stop, as follows:

       v_{f} ^{2}  -v_{o} ^{2} = 2* a* \Delta x (2)

  • Taking into account that vf=0, replacing by the given (v₀) and a from (1), we can solve for Δx, as follows:

       \Delta x =- \frac{v_{o}^{2}}{2*a} =- \frac{(5.90m/s)^{2}}{2*(-1.5m/s2)} = 11.6 m (3)

b)

  • We can find the time needed to come to an stop, applying the definition of acceleration, as follows:

       v_{f} = v_{o} + a*\Delta t (4)

  • Since we have already said that the snowmobile comes to an stop, this means that vf = 0.
  • Replacing a and v₀ as we did in (3), we can solve for Δt as follows:

       \Delta t = \frac{-v_{o} }{a} = \frac{-5.9m/s}{-1.5m/s2} = 3.9 s   (5)

You might be interested in
A 0.5 m diameter wagon wheel consists of a thin rim having a mass of 7 kg and six spokes, each with a mass of 1.2 kg. 1.2 kg 7 k
Arte-miy333 [17]

Explanation:

It is given that,

Mass of the rim of wheel, m₁ = 7 kg

Mass of one spoke, m₂ = 1.2 kg

Diameter of the wagon, d = 0.5 m

Radius of the wagon, r = 0.25 m

Let I is the the moment of inertia of the wagon wheel for rotation about its axis.

We know that the moment of inertia of the ring is given by :

I_1=m_1r^2

I_1=7\times (0.25)^2=0.437\ kgm^2

The moment of inertia of the rod about one end is given by :

I_2=\dfrac{m_2l^2}{3}

l = r

I_2=\dfrac{m_2r^2}{3}

I_2=\dfrac{1.2\times (0.25)^2}{3}=0.025\ kgm^2

For 6 spokes, I_2=0.025\times 6=0.15\ kgm^2

So, the net moment of inertia of the wagon is :

I=I_1+I_2

I=0.437+0.15=0.587\ kgm^2

So, the moment of inertia of the wagon wheel for rotation about its axis is 0.587\ kgm^2. Hence, this is the required solution.

4 0
3 years ago
If Siobhan hits a 0.25 kg volleyball with 0.5 N of force, what is the acceleration of the ball?
Alekssandra [29.7K]

Answer:

2 meters per second²

Explanation:

8 0
3 years ago
Read 2 more answers
If the force applied to an object is not greater than the starting friction, what will happen to the object?
bonufazy [111]

Answer:

Explanation:

the object will not move as the force exerted is not sufficient enough to overcome its force of friction

3 0
3 years ago
Read 2 more answers
Please I need 14, 15, and 16
Finger [1]
15:) using more force in your muscle will increase the force used to bounce the basketball

16:) the pulling of gravity livitation does not allow the ball to go back up with the hieght it was dropped from on the scientifical drop point 

14:) <span>a weight hung from a fixed point so that it can swing freely backward and forward, especially a rod with a weight at the end that regulates the mechanism of a clock that is the deffinition of to which of the word pendulum read it do not plagarize and i hope ii helped and have a great day bye.)::</span>
8 0
3 years ago
Charlotte throws a paper airplane into the air, and it lands on the ground. Which best explains why this is an example of projec
lubasha [3.4K]

Explanation:

  1. yes it is the force that is subjected by the force of gravity only

4 0
3 years ago
Read 2 more answers
Other questions:
  • How are humans able to perceive light waves? Sound waves?
    8·1 answer
  • Really need help with this Physics question!
    5·1 answer
  • Pressure and volume changes at a constant temperature can be calculated using
    7·1 answer
  • If you were to drop an egg on concrete would it crack it
    6·2 answers
  • Cual es el modulo del vector diferencia (a - b) entre dos vectores que forman un angulo de 30° entre si y cuyos módulos son 2m y
    11·1 answer
  • Charlie pulls horizontally to the right on a wagon with a force of 37.2 N. Sara pulls horizontally to the left with a force of 2
    11·2 answers
  • DVDs and Blu-ray disks store information in patterns that are read by laser light. The shorter the wavelength of the light, the
    5·2 answers
  • In a cold winters day, if you left a cup of water sitting outside, it could freeze. Heat is transferred out of the water. Descri
    6·1 answer
  • "1. Which properties make a metal a good material to use for electrical wires? (1 poi
    7·1 answer
  • Describe the movement of the man when the resultant horizontal force is ON
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!