1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
HACTEHA [7]
3 years ago
14

Under the influence of its drive force, a snowmobile is moving at a constant velocity along a horizontal patch of snow. When the

drive force is shut off, the snowmobile coasts to a halt. The snowmobile and its rider have a mass of 128 kg. Under the influence of a drive force of 195 N, it is moving at a constant velocity whose magnitude is 5.90 m/s. The drive force is then shut off. Find (a) the distance in which the snowmobile coasts to a halt and (b) the time required to do so.
Physics
1 answer:
balandron [24]3 years ago
7 0

Answer:

a) Δx = 11.6 m

b) t = 3.9 s

Explanation:

a)

  • Since the snowmobile is moving at constant speed, and the drive force is 195 N, this means that thereis another force equal and opposite acting on it, according to Newton's 2nd Law, due to there is no acceleration present in the horizontal direction .
  • This force is just the force of kinetic friction, and is equal to -195 N (assuming the positive direction as the direction of the movement).
  • Once the drive force is shut off, the only force acting on the snowmobile remains the friction force.
  • According Newton's 2nd Law, this force is causing a negative acceleration (actually slowing down the snowmobile) that can be found as follows:

       a = \frac{F_{fr} }{m} = \frac{-195N}{128kg} = -1.5 m/s2 (1)

  • Assuming the friction force keeps constant, we can use the following kinematic equation in order to find the distance traveled under this acceleration before coming to an stop, as follows:

       v_{f} ^{2}  -v_{o} ^{2} = 2* a* \Delta x (2)

  • Taking into account that vf=0, replacing by the given (v₀) and a from (1), we can solve for Δx, as follows:

       \Delta x =- \frac{v_{o}^{2}}{2*a} =- \frac{(5.90m/s)^{2}}{2*(-1.5m/s2)} = 11.6 m (3)

b)

  • We can find the time needed to come to an stop, applying the definition of acceleration, as follows:

       v_{f} = v_{o} + a*\Delta t (4)

  • Since we have already said that the snowmobile comes to an stop, this means that vf = 0.
  • Replacing a and v₀ as we did in (3), we can solve for Δt as follows:

       \Delta t = \frac{-v_{o} }{a} = \frac{-5.9m/s}{-1.5m/s2} = 3.9 s   (5)

You might be interested in
6–23 an automobile engine consumes fuel at a rate of 22 l/h and delivers 55 kw of power to the wheels. if the fuel has a heating
Anna007 [38]

Explanation & answer:

Given:

Fuel consumption, C = 22 L/h

Specific gravity = 0.8

output power, P  =  55 kW

heating value, H = 44,000 kJ/kg

Solution:

Calculate energy intake

E = C*P*H

= (22 L/h) / (3600 s/h) * (1000 mL/L) * (0.8 g/mL) * (44000 kJ/kg)

= (22/3600)*1000*0.8*44000 j/s

= 215111.1 j/s

Calculate output power

P = 55 kW

= 55000 j/s

Efficiency

= output / input

= P/E

=55000 / 215111.1

= 0.2557

= 25.6% to 1 decimal place.

8 0
3 years ago
Suppose a small planet is discovered that is 16 times as far from the Sun as the Earth's distance is from the Sun. Use Kepler's
mamaluj [8]

Answer:

23376 days

Explanation:

The problem can be solved using Kepler's third law of planetary motion which states that the square of the period T of a planet round the sun is directly proportional to the cube of its mean distance R from the sun.

T^2\alpha R^3\\T^2=kR^3.......................(1)

where k is a constant.

From equation (1) we can deduce that the ratio of the square of the period of a planet to the cube of its mean distance from the sun is a constant.

\frac{T^2}{R^3}=k.......................(2)

Let the orbital period of the earth be T_e and its mean distance of from the sun be R_e.

Also let the orbital period of the planet be T_p and its mean distance from the sun be R_p.

Equation (2) therefore implies the following;

\frac{T_e^2}{R_e^3}=\frac{T_p^2}{R_p^3}....................(3)

We make the period of the planet T_p the subject of formula as follows;

T_p^2=\frac{T_e^2R_p^3}{R_e^3}\\T_p=\sqrt{\frac{T_e^2R_p^3}{R_e^3}\\}................(4)

But recall that from the problem stated, the mean distance of the planet from the sun is 16 times that of the earth, so therefore

R_p=16R_e...............(5)

Substituting equation (5) into (4), we obtain the following;

T_p=\sqrt{\frac{T_e^2(16R_e)^3}{(R_e^3}\\}\\T_p=\sqrt{\frac{T_e^24096R_e^3}{R_e^3}\\}

R_e^3 cancels out and we are left with the following;

T_p=\sqrt{4096T_e^2}\\T_p=64T_e..............(6)

Recall that the orbital period of the earth is about 365.25 days, hence;

T_p=64*365.25\\T_p=23376days

4 0
3 years ago
Help asap please I will give you 5stars
boyakko [2]

Explanation:

In the parallel combination, the equivalent resistance is given by :

\dfrac{1}{R}=\dfrac{1}{R_1}+\dfrac{1}{R_2}+....

4. When three 150 ohms resistors are connected in parallel, the equivalent is given by :

\dfrac{1}{R}=\dfrac{1}{150}+\dfrac{1}{150}+\dfrac{1}{150}\\\\R=50\ \Omega

5. Three resistors of 20 ohms, 40 ohms and 100 ohms are connected in parallel, So,

\dfrac{1}{R}=\dfrac{1}{20}+\dfrac{1}{40}+\dfrac{1}{100}\\\\=11.76\ \Omega

Hence, this is the required solution.

6 0
3 years ago
Please !!! I really need help !!! How do I understand these ?!!!!
trasher [3.6K]

Answer

The answer for the first one I think is false.

The second one would be true i think. I hope i got it right and have a wonderful day

8 0
3 years ago
Read 2 more answers
PLEASE HELP!
Anna [14]

Answer:

Explanation:

At constant pressure , work done by gas = P x ΔV where P is pressure and ΔV is change in volume

ΔV = 9.2 - 5.6 = 3.6 L

3.6 L = 3.6 x 10⁻³ m³

ΔV = 3.6 x 10⁻³ m³

P = 3.7 x 10³ Pa

So work done

= 3.7 x 10³ x 3.6 x 10⁻³ J

= 13.32 J .

( c ) is the answer , because work is done by the gas so it will be positive.

5 0
3 years ago
Read 2 more answers
Other questions:
  • What sound frequency would the human ear not be able to detect?
    5·2 answers
  • Consider a line of children.
    7·1 answer
  • Which of the following is not used to measure wind?
    13·2 answers
  • Which of these statements are true about scientific theories and laws?
    7·2 answers
  • Suppose that a 1000 kg car is traveling at 25 m/s. Its brakes can apply a force of 5000N. What is the minimum distance required
    9·1 answer
  • Help me plz the question was which wave has the highest pitch​
    5·2 answers
  • What is the mass of an object with a momentum of 250 kgm/s and a velocity of 5 m/s?
    8·2 answers
  • A point charge is placed 3 m from a 4 uC charge. What is the strength of the electric field on the point charge at this
    12·2 answers
  • SOS HELP ME
    12·1 answer
  • Newtons third law of motion<br><br> the lab questions are in the paper
    9·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!