1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
EastWind [94]
3 years ago
15

How does increasing the electric current affect the strength of an electromagnet ?

Physics
1 answer:
sergejj [24]3 years ago
7 0

Answer:

The strength of the magnetic field of an electromagnet increases when the current is increased .

You might be interested in
What type of motor operates at a constant steady-state speed regardless of the load?
LekaFEV [45]
The type of motor that allows for constant speed regardless of load are called Geared Speed Control motors. This type of motor has a tachometer feedback device attached at the rear of the motor that gives constant feedback to the speed controller giving the advantage of constant speed regardless of load. The tachometer allows for varied frequency delivery to the motor to maintain pre-set output speed.
7 0
3 years ago
What is electric force ​
jenyasd209 [6]

Answer:

An electric force is exerted between any two charged objects. Objects with the same charge, both positive and both negative, will repel each other, and objects with opposite charges, one positive and one negative, will attract each other

Explanation:

6 0
3 years ago
A cord of negligible mass runs around two massless, frictionless pulleys. A canister with mass m = 20 kg hangs from one pulley.
photoshop1234 [79]

(a) 196 N

The equation of the forces on the side of the cord where the force F is applied is:

F-T=0 (1)

where T is the tension in the cord.

On the other side of the cord, the equation of the forces on the canister is

T-mg = ma (2)

where

m = 20 kg is the mass of the canister

g=9.8 m/s^2 is the acceleration of gravity

a is the acceleration

From (1),

T=F

Substituting into (2),

F-mg = ma\\F=m(g+a)

We want the canister to move at constant speed, so

a = 0

And therefore:

F=mg=(20)(9.8)=196 N

b) 2.0 cm

The cord is inextensible, this means that the acceleration of its parts are the same. Therefore, the acceleration of the free end must be the same as the acceleration of the canister: and this means that the two parts also cover the same distance in the same time.

Therefore, the free end of the cord must be moved exactly the same as the canister, by 2.0 cm.

c) 3.92 J, the same

The work done by the tension in the cord is

W_T = T d

where

T is the tension

d = 2.0 cm = 0.02 m is the displacement

As we said in part (a), the tension in the cord is equal to the force applied to the free end:

T = F

So

T = 196 N

Therefore, the work done by the tension is

W=(196)(0.02)=3.92 J

And since the force applied (F) is the same, then the work done by you when pulling the cord is exactly the same.

(d) -3.92 J

The weight of the canister is

F_g = mg =(20 kg)(9.8 m/s^2)=196 N

However, the direction of the force of gravity is opposite to the displacement. Therefore, the work done by gravity is negative:

W_g = - F_g d

And substituting,

W_g=-(196)(0.02)=-3.92 J

(e) Zero

The net work done on the canister can be simply calculated by adding the work done by the tension in the cord and the weight of the canister:

W=W_T+W_g = 3.92 + (-3.92 ) = 0

This is in agreement with the work-energy theorem, which states that the work done on an object is equal to its change in kinetic energy. In this situation, the canister is moving at constant speed, so its kinetic energy is not change: therefore,

\Delta K = 0 (change in kinetic energy = 0)

and so, the work done on it is also zero.

(f) The pulley system changes the direction of the force applied

This is a simple pulley system, which means  that the system does not multiply the force applied in input. In fact, the mechanical advantage of the system is

MA=\frac{F_{out}}{F_{in}}

where:

F_{out} is the output force, which is the weight of the canister

F_{in} is the force in input, which is F

So, the mechanical advantage is 1:

MA=\frac{196 N}{196 N}=1

From a point of view of energy, therefore, there is no advantage in this system.

However, the advantage offered by the pulley system concerns the direction of the force: in fact, it changes the direction of the applied force (which is F, downward) into the tension of the cord (which is upward on the canister).

6 0
3 years ago
Forces are never isolated because they come in... *
Fudgin [204]

Answer:

different shapes

Explanation:

5 0
3 years ago
How does the loneliest whale relate to physics/waves.
Lelechka [254]
Answer: the loneliest whale relates to the communication that whales give to each other

Explanation: whales have different forms of communication , and the ‘loneliest’ whale can’t get any company by the other whales.


In other words: it may be a new and different way whales communicate, nobody knows much about the loneliest whale. It may be forming a new kind of communication
6 0
3 years ago
Other questions:
  • When the voltage is high, 100v, how does the filament appear?
    13·1 answer
  • watching television with the remote control in your hand which of the folling exerts the greatest gravitational force on you
    9·2 answers
  • Jill pulls on a rope to lift a 12 kg pail out of a well, while the clumsy Jack watches. For a 10.0 meter segment of the lift, sh
    14·1 answer
  • A charge of 4 nc is placed uniformly on a square sheet of nonconducting material of side 17 cm in the yz plane. (a) what is the
    14·1 answer
  • Mount mckinley in Alaska is America’s highest mountain at 20,320 feet. Find it’s height in kilometers. 1mi = 1.609 km= 5280. Ans
    8·1 answer
  • Explain the challenges in developing an accurate rating system for earthquakes. What kinds of variables are there?
    13·1 answer
  • An 0.08 kg arrow is shot from a bow with a velocity of 25 m/s.
    6·1 answer
  • Which statement is true? A) Cells come in different shapes, but are all about the same size—very, very small. B) Cells come in di
    10·1 answer
  • An object is thrown upward with an initial velocity of 32.1 m/s. When the object reaches it maximum height, it is true of the ac
    13·1 answer
  • An energy source will supply a constant current into the load if its internal resistance is.
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!