This question is not complete.
The complete question is as follows:
One problem for humans living in outer space is that they are apparently weightless. One way around this problem is to design a space station that spins about its center at a constant rate. This creates “artificial gravity” at the outside rim of the station. (a) If the diameter of the space station is 800 m, how many revolutions per minute are needed for the “artificial gravity” acceleration to be 9.80m/s2?
Explanation:
a. Using the expression;
T = 2π√R/g
where R = radius of the space = diameter/2
R = 800/2 = 400m
g= acceleration due to gravity = 9.8m/s^2
1/T = number of revolutions per second
T = 2π√R/g
T = 2 x 3.14 x √400/9.8
T = 6.28 x 6.39 = 40.13
1/T = 1/40.13 = 0.025 x 60 = 1.5 revolution/minute
Answer:
Given, Apparent weight(W₂)=4.2N
Weight of liquid displaced (u)=2.5N
Let weight of body in air = W₁
Solution,
U=W₁-W₂
W₁=4.2=2.5=6.7N
∴Weight of body in air is 6.7N
Answer: Stars are bright and have the ability to emit lights of various wavelength. The color of a star plays a significant role. It helps us in determining its temperature. It ranges from reddish color to a bluish-white color. A red color star indicates that the star is of low temperature, whereas a bluish-white star indicates that the star is of high temperature.