Answer:
Noise making has led to loss on hearing.
Explanation:
Supposing you like engaging in parties because of the noise of the sound system it can cause loss on hearing if continued for long
Answer:
3.88m/s
Explanation:
Using the law of conservation of momentum
m1u1+m2u2 = (m1+m2)v
m1 and m2 are the masses
u1 and 2 are the initial velocities
v is the final velocity
Given
m1 = 64kg
u1 = 4.2m/s
m2 = 25kg
u2 = 3.2m/s
Required
Final velocity v
Substitute the given values into the formula
64(4.2)+25(3.2) = (65+25)v
268.8+80 = 90v
348.8 = 90v
v = 348.8/90
v = 3.88m/s
Hence the velocity of the kayak after the swimmer jumps off is 3.88m/s
Here is the full question
Suppose there are 10,000 civilizations in the Milky Way Galaxy. If the civilizations were randomly distributed throughout the disk of the galaxy, about how far (on average) would it be to the nearest civilization?
(Hint: Start by finding the area of the Milky Way's disk, assuming that it is circular and 100,000 light-years in diameter. Then find the average area per civilization, and use the distance across this area to estimate the distance between civilizations.)
Answer:
1000 light-years (ly)
Explanation:
If we go by the hint; The area of the disk can be expressed as:

where D = 100, 000 ly
Let's divide the Area by the number of civilization; if we do that ; we will be able to get 'n' disk that is randomly distributed; so ;

The distance between each disk is further calculated by finding the radius of the density which is shown as follows:



replacing d =
in the equation above; we have:




The distance (s) between each civilization = 
= 2 (500 ly)
= 1000 light-years (ly)
Ground water keept the ground at a stable level when it is gone the cavern it was in has no support and is at risk of callaps
To solve this problem it is necessary to apply the fluid mechanics equations related to continuity, for which the proportion of the input flow is equal to the output flow, in other words:

We know that the flow rate is equivalent to the velocity of the fluid in its area, that is,

Where
V = Velocity
A = Cross-sectional Area
Our values are given as



Since there is continuity we have now that,






Therefore the speed of the water's house supply line is 0.347m/s