1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Pavlova-9 [17]
3 years ago
11

Air enters the compressor of an ideal air-standard Braytoncycle at 100 kPa, 300 K, with a volumetric flow rate of 5 m3/s.The tur

bine inlet temperature is 1400 K. For compressorpressure ratios of 6, 8, and 12, determine(a)the thermal efficiency of the cycle.(b)the back-workratio.(c)the netpower developed, in kW.

Physics
2 answers:
bazaltina [42]3 years ago
5 0

Answer / Explanation:

First, we start solving the question by interpreting and representing it in a flow chart diagram.

The illustration have been  attached in a image below:

Now, if we reference the flow chart diagram attached below, we can see that:

from table A-22 in the flow chart diagram,

h1 = 300.19 kJ/kg

pr1 = 1.386 at T1 = 300 K

and we also note that:

Process 1-2 is isentropy, we have:

p2 / p1 = pr2 / pr1

= pr2 = p2 / p1

=  (1.386)(10)

= 13.86

Now, if we recall the table for the ideal gas property of air, which has been also attached below:

We will now interpolate the table:

On interpolation, we obtain:

h2 = 579.9 kJ/kg

and From Table A-22, we discover that:

h3 = 1515.42 kJ/kg and

pr3 = 450.5 at T3 = 1400 K

Process 3-4 is isentropy, we have:

p4/p3 = pr4/pr3

=pr4 = pr3. p4/p3

= (450.5)(0.1)

= 45.05

Now, going ahead to Interpolating  Table A22, we obtain:

h4 = 808.5 kJ/kg

So on discovering the above values, we go ahead to solving:

(a) The thermal efficiency of the cycle

η = (Wt / m) - (Wc / m) / Qm / m

= (h3 - h4) - (h2 - h1) / h3 - h2

η = (1515.4 - 808.5) - (579.9  - 300.19) / 1515.4  - 579.9

Solving further, we arrive at:

η = 0.457

(b) The back work ratio

= Wc / Wt = h2 - h1 / h3 - h4

= 579.9 - 300.19 / 1515.4 - 808.5

= 0.396

(c) The net power developed, in kW

Wcycle  = m [(h3 − h4) − (h2 − h1)]

Where, the air mass flow rate is given by:

m = (AV)₁ / V₁

= (AV)₁ p₁ / RT₁

m = (5.0 m ³ /s) [ 10⁵ N/m² / 8.314 kj ÷ 28.97kg.k] (300k) / 1kj /10³N.M/

= 5.807 kg/s

The power developed is then:

Wcycle   = (5.807 kg/s)[(1515.4 − 808.5) − (579.9 − 300.19)] kJ/kg

Wcycle  = 2481 kW

Harrizon [31]3 years ago
3 0

Answer:

Explanation:

Given that

Air Inlet Pressure, P1 = 100 KPa

Air Inlet temperature, T1 = 300 K  

Volume flow rate, Q = 5 m³/s

Turbine inlet temperature, T₃ = 1400 K

Compressor pressure ratio, r = 6, 8, 12

Heat capacity ratio or air = 1.4

γ= 1.4

Specific heat constant pressure of air, cp = 1.005 KJ/kg.k

At r = 6,

For Brayton cycle,

T2/T1 = r ^ (γ - 1)/γ

T3/T4 = r ^ (γ - 1)/γ

Now by putting the values

T2/300 = 6 ^ (1.4 - 1)/1.4

1400/T4 = 6 ^ (1.4 - 1)/1.4

T₂ = 1.67 × 300

= 500 K

T₄ = 1400/1.67

= 839.07 K

a)

Efficiency, η = 1 - ((T4 - T1)/(T3 - T2)

Inputting values,

= 1 - ((839.07 - 300)/(1400 - 500))

= 0.40

= 40%

B.

Bwr = Wcomp/Wturb

Where,

Wcomp = workdone by compressor

Wturb = workdone by turbine

= ((T2 - T1)/(T3 - T4))

= ((500 - 300)/(1400 - 839.07))

= 0.36

C.

Net work = Net heat

Net heat = Qa - Qr

Qr = Cp ( T₄-T₁)

Qa = Cp ( T₃-T₂)

Imputting values,

Net heat, Qnet = 1.005 (1400 - 500 - 839.07 + 300)

= 1.005 × 360.93

= 362.74 kJ/kg

Net heat, Qnet = 362.74 kJ/kg

Using the ideal gas equation,

P V = n R T

But n = mass/molar mass,

P  = ρ R T

By putting the values

P  = ρ R T

Inputting values,

100  = ρ x 0.287 x 300

ρ = 1.16  kg/m³

mass flow rate, m = ρ × Q

= 1.16 × 5

= 5.80 kg/s

Net power, Pnet = ms × Net heat, Qnet

= 5.8 × 362.74

= 2103.9 kW.

At r = 8,

For Brayton cycle,

T2/T1 = r ^ (γ - 1)/γ

T3/T4 = r ^ (γ - 1)/γ

Now by putting the values

T2/300 = 8 ^ (1.4 - 1)/1.4

1400/T4 = 8 ^ (1.4 - 1)/1.4

T₂ = 1.81 × 300

= 543.4 K

T₄ = 1400/1.81

= 772.9 K

a)

Efficiency, η = 1 - ((T4 - T1)/(T3 - T2)

Inputting values,

= 1 - ((772.9 - 300)/(1400 - 543.4))

= 0.448

= 45%

B.

Bwr = Wcomp/Wturb

Where,

Wcomp = workdone by compressor

Wturb = workdone by turbine

= ((T2 - T1)/(T3 - T4))

= ((543.4 - 300)/(1400 - 772.9))

= 0.39

C.

Net work = Net heat

Net heat = Qa - Qr

Qr = Cp ( T₄-T₁)

Qa = Cp ( T₃-T₂)

Imputting values,

Net heat, Qnet = 1.005 (1400 - 543.4 - 772.9 + 300)

= 1.005 × 383.7

= 385.62 kJ/kg

Net heat, Qnet = 385.62 kJ/kg

Using the ideal gas equation,

P V = n R T

But n = mass/molar mass,

P  = ρ R T

By putting the values

P  = ρ R T

Inputting values,

100  = ρ x 0.287 x 300

ρ = 1.16  kg/m³

mass flow rate, m = ρ × Q

= 1.16 × 5

= 5.80 kg/s

Net power, Pnet = ms × Net heat, Qnet

= 5.8 × 385.62

= 2236.59 kW.

At r = 12,

For Brayton cycle,

T2/T1 = r ^ (γ - 1)/γ

T3/T4 = r ^ (γ - 1)/γ

Now by putting the values

T2/300 = 12 ^ (1.4 - 1)/1.4

1400/T4 = 12 ^ (1.4 - 1)/1.4

T₂ = 2.03 × 300

= 610 K

T₄ = 1400/2.03

= 688.32 K

a)

Efficiency, η = 1 - ((T4 - T1)/(T3 - T2)

Inputting values,

= 1 - ((688.32 - 300)/(1400 - 610))

= 0.509

= 51%

B.

Bwr = Wcomp/Wturb

Where,

Wcomp = workdone by compressor

Wturb = workdone by turbine

= ((T2 - T1)/(T3 - T4))

= ((610 - 300)/(1400 - 688.32))

= 0.44

C.

Net work = Net heat

Net heat = Qa - Qr

Qr = Cp ( T₄-T₁)

Qa = Cp ( T₃-T₂)

Imputting values,

Net heat, Qnet = 1.005 (1400 - 610 - 688.32 + 300)

= 1.005 × 401.68

= 403.7 kJ/kg

Net heat, Qnet = 403.7 kJ/kg

Using the ideal gas equation,

P V = n R T

But n = mass/molar mass,

P  = ρ R T

By putting the values

P  = ρ R T

Inputting values,

100  = ρ x 0.287 x 300

ρ = 1.16  kg/m³

mass flow rate, m = ρ × Q

= 1.16 × 5

= 5.80 kg/s

Net power, Pnet = ms × Net heat, Qnet

= 5.8 × 403.7

= 2341.39 kW.

You might be interested in
The components of vector A are:
Korvikt [17]

here as it is given that x component of the vector is positive while y component of the vector is negative so we can say the vector must inclined in Fourth quadrant.

So angle must be more than 270 degree and less than 360 degree

Now in order to find the value we can say that

tan\theta = \frac{opposite\: side}{adjacent\: side}

tan\theta = \frac{8.6}{6.1}

\theta = tan^{-1}1.41

\theta = 54.65^0

so it is inclined at above angle with X axis in fourth quadrant

Now if angle is to be measured counterclockwise then its magnitude will be

\theta = 360 - 54.65 = 305.3^0

so the correct answer will be 305 degree

3 0
3 years ago
What is larger a Atom or a Molecule?
Kipish [7]
I believe an Atom is a very powerful source, the basic unit of a chemical element. An atom is a source of nuclear energy.


But a molecule on the other hand isn't so different.
a group of atoms bonded together, representing the smallest fundamental unit of a chemical compound that can take part in a chemical reaction.
I hope that helps, have a fantastic day!
3 0
3 years ago
Read 2 more answers
How many number of musicians constitute a big band?
nikitadnepr [17]
Big band is music group (a group of people who perform instrumental and/or vocal music ) playing jazz or jazz-influenced popular music and which was popular during the Swing Era from the mid-1930s until the late 1940s. These big bands contained saxophones, trumpets, trombone and other instruments and typically consisted of approximately 12 to 25 musicians.
6 0
4 years ago
An incompressible fluid (water) is flowing through a pipe of diameter 20 cm with
sergey [27]

Answer:

115 kPa

Explanation:

Use Bernoulli equation:

P₁ + ½ ρ v₁² + ρgh₁ = P₂ + ½ ρ v₂² + ρgh₂

Assuming no elevation change, h₁ = h₂.

P₁ + ½ ρ v₁² = P₂ + ½ ρ v₂²

Plugging in values:

(582,000 Pa) + ½ (1000 kg/m³) (1.28 m/s)² = P + ½ (1000 kg/m³) (30.6 m/s)²

P = 115,000 Pa

P = 115 kPa

3 0
3 years ago
A force of 2 kN is applied to an object to make it move 3.6 m in the direction of the force. Select the correct value of work do
vaieri [72.5K]

Answer:

W= F × d

W= 2kn × 3.6

W= 7.2 J

Work is measured in Joules!

4 0
3 years ago
Other questions:
  • A 0.12 kg block on a horizontal frictionless surface is attached to a spring whose force constant is 330 N/m. The block is pulle
    7·1 answer
  • Please help me with this. Finding speed.
    15·2 answers
  • Pleaseeee help!!!!!!!!
    15·1 answer
  • The net Forward force on the propeller of a 3.2 KG model airplane is 7.0 N. What is the acceleration of the airplanes
    14·1 answer
  • PLEASE ANSWER BOTH IF YOU CAN, I NEED THESE ASAP!!
    7·1 answer
  • Spaceship 1 and Spaceship 2 have equal masses of 300 kg. Spaceship 1 has
    15·1 answer
  • A football is thrown vertically with an initial velocity of 33m/s. Calculate the velocity of the ball when it’s height increased
    12·1 answer
  • A roast turkey is taken from an oven when its temperature has reached 185°F and is placed on a table in a room where the tempera
    8·2 answers
  • If distance between two charges increased by 2 times then force
    14·1 answer
  • Does anyone know this?!
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!