1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Pavlova-9 [17]
3 years ago
11

Air enters the compressor of an ideal air-standard Braytoncycle at 100 kPa, 300 K, with a volumetric flow rate of 5 m3/s.The tur

bine inlet temperature is 1400 K. For compressorpressure ratios of 6, 8, and 12, determine(a)the thermal efficiency of the cycle.(b)the back-workratio.(c)the netpower developed, in kW.

Physics
2 answers:
bazaltina [42]3 years ago
5 0

Answer / Explanation:

First, we start solving the question by interpreting and representing it in a flow chart diagram.

The illustration have been  attached in a image below:

Now, if we reference the flow chart diagram attached below, we can see that:

from table A-22 in the flow chart diagram,

h1 = 300.19 kJ/kg

pr1 = 1.386 at T1 = 300 K

and we also note that:

Process 1-2 is isentropy, we have:

p2 / p1 = pr2 / pr1

= pr2 = p2 / p1

=  (1.386)(10)

= 13.86

Now, if we recall the table for the ideal gas property of air, which has been also attached below:

We will now interpolate the table:

On interpolation, we obtain:

h2 = 579.9 kJ/kg

and From Table A-22, we discover that:

h3 = 1515.42 kJ/kg and

pr3 = 450.5 at T3 = 1400 K

Process 3-4 is isentropy, we have:

p4/p3 = pr4/pr3

=pr4 = pr3. p4/p3

= (450.5)(0.1)

= 45.05

Now, going ahead to Interpolating  Table A22, we obtain:

h4 = 808.5 kJ/kg

So on discovering the above values, we go ahead to solving:

(a) The thermal efficiency of the cycle

η = (Wt / m) - (Wc / m) / Qm / m

= (h3 - h4) - (h2 - h1) / h3 - h2

η = (1515.4 - 808.5) - (579.9  - 300.19) / 1515.4  - 579.9

Solving further, we arrive at:

η = 0.457

(b) The back work ratio

= Wc / Wt = h2 - h1 / h3 - h4

= 579.9 - 300.19 / 1515.4 - 808.5

= 0.396

(c) The net power developed, in kW

Wcycle  = m [(h3 − h4) − (h2 − h1)]

Where, the air mass flow rate is given by:

m = (AV)₁ / V₁

= (AV)₁ p₁ / RT₁

m = (5.0 m ³ /s) [ 10⁵ N/m² / 8.314 kj ÷ 28.97kg.k] (300k) / 1kj /10³N.M/

= 5.807 kg/s

The power developed is then:

Wcycle   = (5.807 kg/s)[(1515.4 − 808.5) − (579.9 − 300.19)] kJ/kg

Wcycle  = 2481 kW

Harrizon [31]3 years ago
3 0

Answer:

Explanation:

Given that

Air Inlet Pressure, P1 = 100 KPa

Air Inlet temperature, T1 = 300 K  

Volume flow rate, Q = 5 m³/s

Turbine inlet temperature, T₃ = 1400 K

Compressor pressure ratio, r = 6, 8, 12

Heat capacity ratio or air = 1.4

γ= 1.4

Specific heat constant pressure of air, cp = 1.005 KJ/kg.k

At r = 6,

For Brayton cycle,

T2/T1 = r ^ (γ - 1)/γ

T3/T4 = r ^ (γ - 1)/γ

Now by putting the values

T2/300 = 6 ^ (1.4 - 1)/1.4

1400/T4 = 6 ^ (1.4 - 1)/1.4

T₂ = 1.67 × 300

= 500 K

T₄ = 1400/1.67

= 839.07 K

a)

Efficiency, η = 1 - ((T4 - T1)/(T3 - T2)

Inputting values,

= 1 - ((839.07 - 300)/(1400 - 500))

= 0.40

= 40%

B.

Bwr = Wcomp/Wturb

Where,

Wcomp = workdone by compressor

Wturb = workdone by turbine

= ((T2 - T1)/(T3 - T4))

= ((500 - 300)/(1400 - 839.07))

= 0.36

C.

Net work = Net heat

Net heat = Qa - Qr

Qr = Cp ( T₄-T₁)

Qa = Cp ( T₃-T₂)

Imputting values,

Net heat, Qnet = 1.005 (1400 - 500 - 839.07 + 300)

= 1.005 × 360.93

= 362.74 kJ/kg

Net heat, Qnet = 362.74 kJ/kg

Using the ideal gas equation,

P V = n R T

But n = mass/molar mass,

P  = ρ R T

By putting the values

P  = ρ R T

Inputting values,

100  = ρ x 0.287 x 300

ρ = 1.16  kg/m³

mass flow rate, m = ρ × Q

= 1.16 × 5

= 5.80 kg/s

Net power, Pnet = ms × Net heat, Qnet

= 5.8 × 362.74

= 2103.9 kW.

At r = 8,

For Brayton cycle,

T2/T1 = r ^ (γ - 1)/γ

T3/T4 = r ^ (γ - 1)/γ

Now by putting the values

T2/300 = 8 ^ (1.4 - 1)/1.4

1400/T4 = 8 ^ (1.4 - 1)/1.4

T₂ = 1.81 × 300

= 543.4 K

T₄ = 1400/1.81

= 772.9 K

a)

Efficiency, η = 1 - ((T4 - T1)/(T3 - T2)

Inputting values,

= 1 - ((772.9 - 300)/(1400 - 543.4))

= 0.448

= 45%

B.

Bwr = Wcomp/Wturb

Where,

Wcomp = workdone by compressor

Wturb = workdone by turbine

= ((T2 - T1)/(T3 - T4))

= ((543.4 - 300)/(1400 - 772.9))

= 0.39

C.

Net work = Net heat

Net heat = Qa - Qr

Qr = Cp ( T₄-T₁)

Qa = Cp ( T₃-T₂)

Imputting values,

Net heat, Qnet = 1.005 (1400 - 543.4 - 772.9 + 300)

= 1.005 × 383.7

= 385.62 kJ/kg

Net heat, Qnet = 385.62 kJ/kg

Using the ideal gas equation,

P V = n R T

But n = mass/molar mass,

P  = ρ R T

By putting the values

P  = ρ R T

Inputting values,

100  = ρ x 0.287 x 300

ρ = 1.16  kg/m³

mass flow rate, m = ρ × Q

= 1.16 × 5

= 5.80 kg/s

Net power, Pnet = ms × Net heat, Qnet

= 5.8 × 385.62

= 2236.59 kW.

At r = 12,

For Brayton cycle,

T2/T1 = r ^ (γ - 1)/γ

T3/T4 = r ^ (γ - 1)/γ

Now by putting the values

T2/300 = 12 ^ (1.4 - 1)/1.4

1400/T4 = 12 ^ (1.4 - 1)/1.4

T₂ = 2.03 × 300

= 610 K

T₄ = 1400/2.03

= 688.32 K

a)

Efficiency, η = 1 - ((T4 - T1)/(T3 - T2)

Inputting values,

= 1 - ((688.32 - 300)/(1400 - 610))

= 0.509

= 51%

B.

Bwr = Wcomp/Wturb

Where,

Wcomp = workdone by compressor

Wturb = workdone by turbine

= ((T2 - T1)/(T3 - T4))

= ((610 - 300)/(1400 - 688.32))

= 0.44

C.

Net work = Net heat

Net heat = Qa - Qr

Qr = Cp ( T₄-T₁)

Qa = Cp ( T₃-T₂)

Imputting values,

Net heat, Qnet = 1.005 (1400 - 610 - 688.32 + 300)

= 1.005 × 401.68

= 403.7 kJ/kg

Net heat, Qnet = 403.7 kJ/kg

Using the ideal gas equation,

P V = n R T

But n = mass/molar mass,

P  = ρ R T

By putting the values

P  = ρ R T

Inputting values,

100  = ρ x 0.287 x 300

ρ = 1.16  kg/m³

mass flow rate, m = ρ × Q

= 1.16 × 5

= 5.80 kg/s

Net power, Pnet = ms × Net heat, Qnet

= 5.8 × 403.7

= 2341.39 kW.

You might be interested in
Que es el potencial motor?
aleksandrvk [35]

Explanation:

Motor evoked potentials (MEPs) are the electrical signals recorded from the descending motor pathways or from muscles following stimulation of motor pathways within the brain.

Espero eso ayude. Marque como más inteligente.

5 0
2 years ago
How does a dry cell produce electricity​
Angelina_Jolie [31]

Answer:

the cell which does not contain acid is called dry cell

Explanation:

it is made in a zinc container. if the dry cell is not used for a long time, it stops working due to local action.

<h3>thank you :)</h3>
3 0
3 years ago
Water is falling on the blades of a turbine at a rate of 100 kg/s from a certain spring. If the height of spring be 100m, then t
pashok25 [27]

Answer:

Natae Si Jordan Kaya Sya Napaihe

Explanation:

haha

4 0
3 years ago
Two froghoppers sitting on the ground aim at the same leaf, located 35 cm above the ground. Froghopper A jumps straight up while
evablogger [386]
Frog hopper B❤️recent emojis
3 0
3 years ago
Read 2 more answers
The bright, visible surface of the sun is called the
katrin2010 [14]
<span>The bright, visible surface of the Sun is called corona. The outermost layer of the Sun's atmosphere is called chromosphere.</span>
5 0
3 years ago
Other questions:
  • What is one way you can destroy a magnet’s magnetism? a. by putting it in water b. by cooling it c. by heating it d. by breaking
    12·2 answers
  • Why do scientists build models.
    7·2 answers
  • At which location could you place the north pole of a bar magnet so that it would be pushed away from the magnet shown?
    10·2 answers
  • A proton travels through a region of uniform magnetic field at an angle \thetaθ relative to the magnetic field. The magnitude of
    5·1 answer
  • One end of a uniform well-lagged metal bar of length 0.80 m and cross-sectional area of
    11·1 answer
  • A roller coaster at the top of a 45 meter hill has a mass of 5000 kilograms. What is the potential energy?
    5·1 answer
  • What does overloading your muscles accomplish?
    12·2 answers
  • Light incident on a Surface at an angle of 45° undergoes diffused reflection. At what angle will it reflect?
    10·2 answers
  • A ball is given an initial velocity of 160ft/s straight up. Use g = -32ft/s^2
    9·1 answer
  • Through what potential difference must an electron be accelerated from rest to have a de Broglie wavelength of 500 nmnm
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!