1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Pavlova-9 [17]
2 years ago
11

Air enters the compressor of an ideal air-standard Braytoncycle at 100 kPa, 300 K, with a volumetric flow rate of 5 m3/s.The tur

bine inlet temperature is 1400 K. For compressorpressure ratios of 6, 8, and 12, determine(a)the thermal efficiency of the cycle.(b)the back-workratio.(c)the netpower developed, in kW.

Physics
2 answers:
bazaltina [42]2 years ago
5 0

Answer / Explanation:

First, we start solving the question by interpreting and representing it in a flow chart diagram.

The illustration have been  attached in a image below:

Now, if we reference the flow chart diagram attached below, we can see that:

from table A-22 in the flow chart diagram,

h1 = 300.19 kJ/kg

pr1 = 1.386 at T1 = 300 K

and we also note that:

Process 1-2 is isentropy, we have:

p2 / p1 = pr2 / pr1

= pr2 = p2 / p1

=  (1.386)(10)

= 13.86

Now, if we recall the table for the ideal gas property of air, which has been also attached below:

We will now interpolate the table:

On interpolation, we obtain:

h2 = 579.9 kJ/kg

and From Table A-22, we discover that:

h3 = 1515.42 kJ/kg and

pr3 = 450.5 at T3 = 1400 K

Process 3-4 is isentropy, we have:

p4/p3 = pr4/pr3

=pr4 = pr3. p4/p3

= (450.5)(0.1)

= 45.05

Now, going ahead to Interpolating  Table A22, we obtain:

h4 = 808.5 kJ/kg

So on discovering the above values, we go ahead to solving:

(a) The thermal efficiency of the cycle

η = (Wt / m) - (Wc / m) / Qm / m

= (h3 - h4) - (h2 - h1) / h3 - h2

η = (1515.4 - 808.5) - (579.9  - 300.19) / 1515.4  - 579.9

Solving further, we arrive at:

η = 0.457

(b) The back work ratio

= Wc / Wt = h2 - h1 / h3 - h4

= 579.9 - 300.19 / 1515.4 - 808.5

= 0.396

(c) The net power developed, in kW

Wcycle  = m [(h3 − h4) − (h2 − h1)]

Where, the air mass flow rate is given by:

m = (AV)₁ / V₁

= (AV)₁ p₁ / RT₁

m = (5.0 m ³ /s) [ 10⁵ N/m² / 8.314 kj ÷ 28.97kg.k] (300k) / 1kj /10³N.M/

= 5.807 kg/s

The power developed is then:

Wcycle   = (5.807 kg/s)[(1515.4 − 808.5) − (579.9 − 300.19)] kJ/kg

Wcycle  = 2481 kW

Harrizon [31]2 years ago
3 0

Answer:

Explanation:

Given that

Air Inlet Pressure, P1 = 100 KPa

Air Inlet temperature, T1 = 300 K  

Volume flow rate, Q = 5 m³/s

Turbine inlet temperature, T₃ = 1400 K

Compressor pressure ratio, r = 6, 8, 12

Heat capacity ratio or air = 1.4

γ= 1.4

Specific heat constant pressure of air, cp = 1.005 KJ/kg.k

At r = 6,

For Brayton cycle,

T2/T1 = r ^ (γ - 1)/γ

T3/T4 = r ^ (γ - 1)/γ

Now by putting the values

T2/300 = 6 ^ (1.4 - 1)/1.4

1400/T4 = 6 ^ (1.4 - 1)/1.4

T₂ = 1.67 × 300

= 500 K

T₄ = 1400/1.67

= 839.07 K

a)

Efficiency, η = 1 - ((T4 - T1)/(T3 - T2)

Inputting values,

= 1 - ((839.07 - 300)/(1400 - 500))

= 0.40

= 40%

B.

Bwr = Wcomp/Wturb

Where,

Wcomp = workdone by compressor

Wturb = workdone by turbine

= ((T2 - T1)/(T3 - T4))

= ((500 - 300)/(1400 - 839.07))

= 0.36

C.

Net work = Net heat

Net heat = Qa - Qr

Qr = Cp ( T₄-T₁)

Qa = Cp ( T₃-T₂)

Imputting values,

Net heat, Qnet = 1.005 (1400 - 500 - 839.07 + 300)

= 1.005 × 360.93

= 362.74 kJ/kg

Net heat, Qnet = 362.74 kJ/kg

Using the ideal gas equation,

P V = n R T

But n = mass/molar mass,

P  = ρ R T

By putting the values

P  = ρ R T

Inputting values,

100  = ρ x 0.287 x 300

ρ = 1.16  kg/m³

mass flow rate, m = ρ × Q

= 1.16 × 5

= 5.80 kg/s

Net power, Pnet = ms × Net heat, Qnet

= 5.8 × 362.74

= 2103.9 kW.

At r = 8,

For Brayton cycle,

T2/T1 = r ^ (γ - 1)/γ

T3/T4 = r ^ (γ - 1)/γ

Now by putting the values

T2/300 = 8 ^ (1.4 - 1)/1.4

1400/T4 = 8 ^ (1.4 - 1)/1.4

T₂ = 1.81 × 300

= 543.4 K

T₄ = 1400/1.81

= 772.9 K

a)

Efficiency, η = 1 - ((T4 - T1)/(T3 - T2)

Inputting values,

= 1 - ((772.9 - 300)/(1400 - 543.4))

= 0.448

= 45%

B.

Bwr = Wcomp/Wturb

Where,

Wcomp = workdone by compressor

Wturb = workdone by turbine

= ((T2 - T1)/(T3 - T4))

= ((543.4 - 300)/(1400 - 772.9))

= 0.39

C.

Net work = Net heat

Net heat = Qa - Qr

Qr = Cp ( T₄-T₁)

Qa = Cp ( T₃-T₂)

Imputting values,

Net heat, Qnet = 1.005 (1400 - 543.4 - 772.9 + 300)

= 1.005 × 383.7

= 385.62 kJ/kg

Net heat, Qnet = 385.62 kJ/kg

Using the ideal gas equation,

P V = n R T

But n = mass/molar mass,

P  = ρ R T

By putting the values

P  = ρ R T

Inputting values,

100  = ρ x 0.287 x 300

ρ = 1.16  kg/m³

mass flow rate, m = ρ × Q

= 1.16 × 5

= 5.80 kg/s

Net power, Pnet = ms × Net heat, Qnet

= 5.8 × 385.62

= 2236.59 kW.

At r = 12,

For Brayton cycle,

T2/T1 = r ^ (γ - 1)/γ

T3/T4 = r ^ (γ - 1)/γ

Now by putting the values

T2/300 = 12 ^ (1.4 - 1)/1.4

1400/T4 = 12 ^ (1.4 - 1)/1.4

T₂ = 2.03 × 300

= 610 K

T₄ = 1400/2.03

= 688.32 K

a)

Efficiency, η = 1 - ((T4 - T1)/(T3 - T2)

Inputting values,

= 1 - ((688.32 - 300)/(1400 - 610))

= 0.509

= 51%

B.

Bwr = Wcomp/Wturb

Where,

Wcomp = workdone by compressor

Wturb = workdone by turbine

= ((T2 - T1)/(T3 - T4))

= ((610 - 300)/(1400 - 688.32))

= 0.44

C.

Net work = Net heat

Net heat = Qa - Qr

Qr = Cp ( T₄-T₁)

Qa = Cp ( T₃-T₂)

Imputting values,

Net heat, Qnet = 1.005 (1400 - 610 - 688.32 + 300)

= 1.005 × 401.68

= 403.7 kJ/kg

Net heat, Qnet = 403.7 kJ/kg

Using the ideal gas equation,

P V = n R T

But n = mass/molar mass,

P  = ρ R T

By putting the values

P  = ρ R T

Inputting values,

100  = ρ x 0.287 x 300

ρ = 1.16  kg/m³

mass flow rate, m = ρ × Q

= 1.16 × 5

= 5.80 kg/s

Net power, Pnet = ms × Net heat, Qnet

= 5.8 × 403.7

= 2341.39 kW.

You might be interested in
A simple harmonic oscillator completes 1550 cycles in 30 min. (a) Calculate the period. s (b) Calculate the frequency of the mot
nordsb [41]

Answer:

(a) 1.16 s

(b)0.861 Hz

Explanation:

(a) Period : The period of a simple harmonic motion is the time in seconds, required for a object undergoing oscillation to complete one cycle.

From the question,

If 1550 cycles is completed in (30×60) seconds,

1 cycle is completed in x seconds

x = 30×60/1550

x = 1.16 s

Hence the period is 1.16 seconds.

(b) Frequency : This can be defined as the number of cycles that is completed in one seconds, by an oscillating body. The S.I unit of frequency is Hertz (Hz).

Mathematically, Frequency is given as

F = 1/T ........................... Equation 1

Where F = frequency, T = period.

Given: T = 1.16 s.

Substitute into equation 1

F = 1/1.16

F = 0.862 Hz

Hence thee frequency = 0.862 Hz

6 0
3 years ago
Based on the second law of thermodynamics, how would you expect a system to change over time?
Romashka-Z-Leto [24]

Endless movement between hot and cold will eventually mean the end of the universe. This law is about inefficiency, degeneration and decay. <u>The second law can be expressed in several ways, the simplest being that heat will naturally flow from a hotter to a colder body. At its heart is a property of thermodynamic systems called entropy.</u> Entropy basically means an increase in randomness. Hope this helps mate.

5 0
3 years ago
Read 2 more answers
How do human population growth trends differ between developed nations and developing nations?
ololo11 [35]

Answer:

Replacement-Level Fertility

Another important population characteristic that differ btw develop nation and developing nations is relates to births is replacement-level fertility. Replacement-level fertility is the fertility rate that will result in the replacement of the parents in the population. Again, in an ideal world, the human replacement-level fertility rate would be exactly two. This would mean that each couple would produce two offspring that would replace them in the population. If this occurred, then the human population would stay at a stable rate

4 0
2 years ago
(See picture) may I have help!!?
algol13
Picture is blurry…. try re uploading it
6 0
2 years ago
A tiger runs one kilometer. The tiger does 15,000 J of work and has a total power output of 500 W. How many minutes does it take
defon
Power is the amount of energy consumed per unit time. Having no direction, it is a scalar quantity. <span>As is implied by the equation for </span>power<span>, a unit of </span>power <span>is equivalent to a unit of work divided by a unit of time. The formula would be as follows:

P = W/t 

We calculate as follows:

500 W = 15000 J / t
t = 30 s</span>
3 0
3 years ago
Other questions:
  • Suppose you have thrown a rock nearly straight up at a coconut in a palm tree,and the rock misses on the way up but hits the coc
    5·1 answer
  • What is this process called when a liquid turns into gas
    13·1 answer
  • What force is described as the attraction between a sample of matter and all other matter in the universe?
    15·1 answer
  • A cat chases a mouse across a 1.2 m high table. The mouse steps out of the way, and the cat slides off the table and strikes the
    7·1 answer
  • How would you describe the magnetic field produced by a current in a straight wire?
    7·2 answers
  • You toss a ball straight up in the air. Immediately after you let go of it, what force or forces are acting on the ball
    14·1 answer
  • A jet fighter pilot wishes to accelerate from rest at 5 ggg to reach Mach-3 (three times the speed of sound) as quickly as possi
    9·1 answer
  • What type of reaction is shown in the following chemical equation: 2H2O → 2H2 + O2?
    7·2 answers
  • 8.
    12·1 answer
  • Samples of different materials, A and B, have the same mass, but the sample
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!