The electrostatic force between two charged objects is given by

where
k is the Coulomb's constant
q1 is the charge of the first object
q2 is the charge of the second object
r is the separation between the two objects
In our problem:



So if we plug these numbers into the equation, we can find the electrostatic force between the two objects:
The approximate diameter of an inflated basketball is <span>2 × 10^–2 m. The answer is number 1. The rest of the choices do not answer the question above because they are too big for the diameter of the basketball.</span>
Answer:
10.4 m/s
Explanation:
The problem can be solved by using the following SUVAT equation:

where
v is the final velocity
u is the initial velocity
a is the acceleration
t is the time
For the diver in the problem, we have:
is the initial velocity (positive because it is upward)
is the acceleration of gravity (negative because it is downward)
By substituting t = 1.7 s, we find the velocity when the diver reaches the water:

And the negative sign means that the direction is downward: so, the speed is 10.4 m/s.
The temperature of the river downstream of the nuclear power plant will be 53.3 degrees f