1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Kruka [31]
3 years ago
8

An electron is released from rest in a weak electric field given by E =-2.30 x 10-10 N/Cj. After the electron has traveled a ver

tical distance of 1.0 μm, what is its speed? (Do not neglect the gravitational force on the electron.) mm/s
Physics
1 answer:
Goshia [24]3 years ago
6 0

Explanation:

It is given that,

An electron is released from rest in a weak electric field of, E=2.3\times 10^{-10}\ N/C

Vertical distance covered, s=1\ \mu m=10^{-6}\ m

We need to find the speed of the electron. Let its speed is v. Using third equation of motion as :

v^2-u^2=2as

v^2=2as.............(1)

Electric force is F_e and force of gravity is F_g. As both forces are acting in downward direction. So, total force is:

F=mg+qE

F=9.1\times 10^{-31}\times 9.8+1.6\times 10^{-19}\times 2.3\times 10^{-10}

F=4.57\times 10^{-29}\ N

Acceleration of the electron, a=\dfrac{F}{m}

a=\dfrac{4.57\times 10^{-29}\ N}{9.1\times 10^{-31}\ kg}

a=50.21\ m/s^2

Put the value of a in equation (1) as :

v=\sqrt{2as}

v=\sqrt{2\times 50.21\times 10^{-6}}

v = 0.010 m/s

So, the speed of the electron is 0.010 m/s. Hence, this is the required solution.

You might be interested in
Heptane and water do not mix, and heptane has a lower density (0.684 g/mL) than water (1.00 g/mL). A graduated cylinder contains
lakkis [162]

Given that the density of heptane is

d_h=\frac{0.684g}{mL}

The mass of heptane is

m_h=31\text{ g}

The density of water is

d_w=\frac{1g}{mL}

The mass of water is

m_w=37\text{ g}

The volume of heptane will be

\begin{gathered} V_h=\frac{m_h}{d_h} \\ =\frac{31}{0.684} \\ =45.32\text{ mL} \end{gathered}

The volume of water will be

\begin{gathered} V_w=\frac{m_w}{d_w} \\ =\frac{37}{1} \\ =37\text{ mL} \end{gathered}

Thus, the volume of heptane is 45.32 mL and the volume of water is 37 mL.

The total volume of liquid in the cylinder will be

\begin{gathered} V=V_h+V_w \\ =45.32+37 \\ =82.32\text{ mL} \end{gathered}

The total volume of liquid in the cylinder will be 82.32 mL.

7 0
11 months ago
Help, It has multiple answers for this question.
evablogger [386]
The answer is ultra violet radiation. From the air
4 0
3 years ago
Help this was due yesterday...
insens350 [35]

Answer:

Concept: Periodic Trends

  1. So we have Li and we have C
  2. Li has is lower in the periodic table and as you progress from s group to p group and eventually d group, the traction and ability to attract electrons increases.
  3. Hence option D
3 0
3 years ago
Read 2 more answers
If an unknown element has a mass of 17 and contains 6 neutrons, how many protons does it have ?
lbvjy [14]

The mass number is the total number of protons and neutrons within an atom and since we know that the unknown element has 6 neutrons, we can simply subtract the number of neutrons from the mass number to get the number of protons.

17 - 6 = 11

There are 11 protons in this unknown element.


Extra:

The number of protons (+) and electrons (-) are equal in a neutral atom so since you know that there are 11 protons you also know that there are 11 electrons. On the periodic table, the element with 11 electrons is Na or Sodium.


Hope this helps! :)

6 0
3 years ago
A 65.0-Ω resistor is connected to the terminals of a battery whose emf is 12.0 V and whose internal resistance is 0.5 Ω. Calcula
Luda [366]

Answer:

a) 0.1832 A

b) 11.91 Volts

c) 2.18 Watt , 0.0168 Watt

Explanation:

(a)

R = external resistor connected to the terminals of the battery = 65 Ω

E = Emf of the battery = 12.0 Volts

r = internal resistance of the battery = 0.5 Ω

i = current flowing in the circuit

Using ohm's law

E = i (R + r)

12 = i (65 + 0.5)

i = 0.1832 A

(b)

Terminal voltage is given as

V_{ab} = i R

V_{ab} = (0.1832) (65)

V_{ab} = 11.91 Volts

(c)

Power dissipated in the resister R is given as

P_{R} = i²R

P_{R} = (0.1832)²(65)

P_{R} = 2.18 Watt

Power dissipated in the internal resistance is given as

P_{r} = i²r

P_{r} = (0.1832)²(0.5)

P_{r} = 0.0168 Watt

5 0
3 years ago
Other questions:
  • Megan rode the bus to school, which is located 8 kilometers from her home. If Megan's frame of reference is her house, and it to
    7·1 answer
  • PHYSICS! I AM TIMED!
    15·2 answers
  • A student uses a compressed spring of force constant 22 N/m to shoot a 0.0075 kg eraser across a desk. The magnitude of the forc
    7·1 answer
  • Based on what you have just read, why is studying atoms and their parts and particles helpful to people?
    12·2 answers
  • Need help before 10pm tomorrow night
    8·1 answer
  • ~*~WILL GIVE BRAINLIST~*~
    5·1 answer
  • The front and rear sprockets on a bicycle have radii of 8.40 and 4.91 cm, respectively. The angular speed of the front sprocket
    10·2 answers
  • ________ skids occur when the brakes are applied so hard that the front or rear wheels lost traction. Cornering
    6·2 answers
  • Two equal magnitude electric charges are separated by a distance d. The electric potential at the midpoint between these two cha
    10·1 answer
  • Q: Explain the shape of the I-V graph of the filament lamp?<br>​
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!