Answer:
Part a)

Part b)

Explanation:
Part a)
Electric potential is a scalar quantity
so here we can say that total potential due to a ring on its center is given as

here we know that



now we have


Part b)
Potential on the axis of the ring is given as



Answer:
t = 0.67 [s]
Explanation:
To solve this problem we must use the following kinematics equation.

Vf = final velocity = 20[m/s]
Vi = initial velocity = 10 [m/s]
a = aceleration = 15 [m/s^2]
Now replacing in the equation we have:
20 = 10 + (15*t)
t = (20-10)/15
t = 0.67 [s]
Answer:
See the answer below
Explanation:
<em>The best thing one can do in this case would be to return the microscope's objective to low power and then </em><em>re-center the specimen </em><em>before switching back to high-dry power.</em>
Most of the time, <u>what makes the specimen under the microscope to be out of focus at higher objective powers after being in focus at low power is because they are not properly centered on the stage</u>. Hence, before calling on the instructor, it would be wise to first return to low power, re-center the specimen and bring it into focus after which the high power objective can be returned to and the fine focus adjusted to bring the image back to focus.
After doing the above and the specimen still does not come into focus, then the instructor can be called upon.
Answer:
or pure hydrogen
Explanation:
hope this helps you because this is the answer i have for you