<h2>MARK BRAINLIEST</h2>
For this assignment, you will develop several models that show how light waves and mechanical waves are reflected, absorbed, or transmitted through various materials. For each model, you will write a brief description of the interaction between the wave and the material. You will also compose two <u><em>typewritten</em></u> paragraphs. The first will compare and contrast light waves interacting with different materials. The second will explain why materials with certain properties are well suited for particular functions.
<h2><u>Background Information</u></h2>
A wave is any disturbance that carries energy from one place to another. There are two different types of waves: mechanical and electromagnetic. A mechanical wave carries energy through matter. Energy is transferred through vibrating particles of matter. Examples of mechanical waves include ocean waves, sound waves, and seismic waves. Like a mechanical wave, an electromagnetic wave can also carry energy through matter. However, unlike a mechanical wave, an electromagnetic wave does not need particles of matter to carry energy. Examples of electromagnetic waves include microwaves, visible light, X-rays, and radiation from the Sun.
<span>To begin, the formula for finding frequency when wavelength is known is "f = c / w" when c is the constant velocity (3 * 10^8 m/s). To convert the wavelength into a common form (m/s), it will have to be multiplied by 10^-2. This leaves the equation as "f = 3.0 * 10^8 / (2.4 * 10^-5 * 10^-2), or 2.4 * 10^-7. This gives 1.25 * 10^15 m/s as the frequency.</span>
25km/h = 6.94 m/s
suvat
s=16
u=6.94
v=0
a=a
v^2=u^2+2as
(v^2-u^2)/2s = a =1.5ms^-2