Answer:
option (b) 4900 N
Explanation:
m = 2000 kg, R = 6380 km = 6380 x 10^3 m, Me = 5.98 x 10^24 kg, h = R
F = G Me x m / (R + h)^2
F = G Me x m / 2R^2
F = 6.67 x 10^-11 x 5.98 x 10^24 x 2000 / (2 x 6380 x 10^3)^2
F = 4900 N
Answer:

Explanation:
The gravitational force exerted on the satellites is given by the Newton's Law of Universal Gravitation:

Where M is the mass of the earth, m is the mass of a satellite, R the radius of its orbit and G is the gravitational constant.
Also, we know that the centripetal force of an object describing a circular motion is given by:

Where m is the mass of the object, v is its speed and R is its distance to the center of the circle.
Then, since the gravitational force is the centripetal force in this case, we can equalize the two expressions and solve for v:

Finally, we plug in the values for G (6.67*10^-11Nm^2/kg^2), M (5.97*10^24kg) and R for each satellite. Take in account that R is the radius of the orbit, not the distance to the planet's surface. So
and
(Since
). Then, we get:

In words, the orbital speed for satellite A is 7667m/s (a) and for satellite B is 7487m/s (b).
Answer:
The last option is the only correct one if you like to multiply
The second last option is good if you like to divide.
Explanation:
Each fraction in the last two options has a value of 1
example
dividing by 1
15 cm /(100 cm/ 1 m) = 0.15 m 0.15 m / (1000 m/ 1km) = 0.00015 km
and
multiplying by 1
15 cm(1 m / 100cm) = 0.15 m 0.15m(1 km/1000m) = 0.00015 km
only one of the two fractions in each of the top two options has a value of 1.
Answer:
A. Electric flux
Explanation:
Electric flux is the rate of flow of the electric field through a given area (see ). Electric flux is proportional to the number of electric field lines going through a virtual surface.
Electric flux has SI units of volt metres (V m), or, equivalently, newton metres squared per coulomb (N m2 C−1). Thus, the SI base units of electric flux are kg·m3·s−3·A−1.