Answer:
No, the car will not make it to the top of the hill.
Explanation:
Let ΔX be how long the slope of the hill is, Δx be how far the car will travel along the slope of the hill, Ф be the angle the slope of the hill makes with the horizontal(bottom of the hill), ki be the kinetic energy of the car at the bottom of the hill and vi be the velocity of the car at the bottom of the hill and kf be the kinetic energy of the car when it stop moving at vf.
Since Ф is the angle between the horizontal and the slope, the relationship between the angle and the slope and the height of the hill is given by
sinФ = 12/ΔX
Which gives you the slope as
ΔX = 12/sinФ
Therefore for the car to reach the top of the hill it will have to travel ΔX.
Ignoring friction the total work done is given by
W = ΔK
W = (kf - ki)
Since the car will come to a stop, kf = 0 J
W = -ki
m×g×sinФ×Δx = 1/2×m×vi^2
(9.8)×sinФ×Δx = 1/2×(10)^2
sinФΔx = 5.1
Δx = 5.1/sinФ
ΔX>>Δx Ф ∈ (0° , 90°)
(Note that the maximum angle Ф is 90° because the slope of a hill can never be greater ≥ 90° because that would then mean the car cannot travel uphill.)
Since the car can never travel the distance of the slope, it can never make it to the top of the hill.
Answer:
I think its radiation
Explanation:
Conduction is the transfer of heat through solids (A)
Convection is the transfer of heat through liquids or gasses (B)
Radiation is the transfer of heat through em waves (C)
Answer: Tsunami.
Explanation :
Tsunami is the result of a sudden vertical offset in the ocean floor and is most often the result of plate movement on the ocean floor.
Tsunami is caused due to the displacement of a large volume of water like in an ocean. It consists of a series of waves. It destroys coastlines and coastal settlements. It is also known as a tidal wave.
So, the correct option is (b) Tsunami.
The angular momentum of an object is equal to the product of its moment of inertia and angular velocity.
L = Iω
I = 1/2 MR²
I = 1/2 x 13 x (0.2)
I = 1.3
ω = 2π/t
ω = 2π/0.3
ω = 20.9
L = 1.3 x 20.9
= 27.2 kgm²/s
Answer:
<u>B. the stars of spectral type A and F are considered reasonably to have habitable planets but much less likely to have planets with complex plant - or animal - like life.</u>
Explanation:
The appropriate spectral range for habitable stars is considered to be "late F" or "G", to "mid-K" or even late "A". <em>This corresponds to temperatures of a little more than 7,000 K down to a little less than 4,000 K</em> (6,700 °C to 3,700 °C); the Sun, a G2 star at 5,777 K, is well within these bounds. "Middle-class" stars (late A, late F, G , mid K )of this sort have a number of characteristics considered important to planetary habitability:
• They live at least a few billion years, allowing life a chance to evolve. <em>More luminous main-sequence stars of the "O", "B", and "A" classes usually live less than a billion years and in exceptional cases less than 10 million.</em>
• They emit enough high-frequency ultraviolet radiation to trigger important atmospheric dynamics such as ozone formation, but not so much that ionisation destroys incipient life.
• They emit sufficient radiation at wavelengths conducive to photosynthesis.
• Liquid water may exist on the surface of planets orbiting them at a distance that does not induce tidal locking.
<u><em>Thus , the stars of spectral type A and F are considered reasonably to have habitable planets but much less likely to have planets with complex plant - or animak - like life.</em></u>