When we jump from the truck and accelerate towards the earth surface, the earth also accelerates towards us but it's acceleration is very negligible.
To find the answer, we need to know about the acceleration of earth due to the gravitational attraction.
<h3>What's the gravitational force between the earth and a person?</h3>
- Gravitational attraction force is GMm/r² between the earth and a person.
- M= mass of the earth
m= mass of the person
r= separation between them.
<h3>What's the acceleration of the earth towards the person when he jumps from a truck?</h3>
- According to Newton's second law, Force = M×acceleration
- Acceleration= Force / M
- Here, Force = GMm/r²,
so acceleration of earth= Gm/r²
- As this acceleration is very small, so we can't notice it.
Thus, we can conclude that the earth also accelerates towards us.
Learn more about the gravitational force here:
brainly.com/question/72250
#SPJ4
Answer: The law of conservation of energy is a physical law that states energy cannot be created or destroyed but may be changed from one form to another. Another way of stating this law of chemistry is to say the total energy of an isolated system.
Explanation:
( 3 yr) · (186,282.397 mile/s) · (86,400 s/day) · (365 day/yr)
= (3 · 186,282.397 · 86,400 · 365) mile
= 1.762380502 x 10¹³ miles
= 1.8 x 10¹³ miles (rounded to the nearest trillion miles)
ANSWER
T₂ = 10.19N
EXPLANATION
Given:
• The mass of the ball, m = 1.8kg
First, we draw the forces acting on the ball, adding the vertical and horizontal components of each one,
In this position, the ball is at rest, so, by Newton's second law of motion, for each direction we have,

The components of the tension of the first string can be found considering that they form a right triangle, where the vector of the tension is the hypotenuse,

We have to find the tension in the horizontal string, T₂, but first, we have to find the tension 1 using the first equation,

Solve for T₁,

Now, we use the second equation to find the tension in the horizontal string,

Solve for T₂,

Hence, the tension in the horizontal string is 10.19N, rounded to the nearest hundredth.
The frequency, f, of a wave is the number of waves passing a point in a certain time. We normally use a time of one second, so this gives frequency the unit hertz (Hz), since one hertz is equal to one wave per second.