Answer:
at T = 0ºC the change of state is from the solid state to the gaseous state
Explanation:
In this exercise we are asked about the changes of state, from the data we will assume that the material is water.
Water can exist in three solid states, liquid and gas, in a graph of pressure ℗ against temperature (T) there is a point called triple at T = 0.01ºC, below this point the curve has two states at high pressure solid and low pressure gas.
As a result of the previous ones at T = 0ºC the change of state is from the solid state to the gaseous state
Answer:
Well it would be equal to 500N because pushing forward the ball (or whatever maybe a body) would push the canon back an even 500N backwards...
Explanation:
<span>Answer:
The temperature doesn't affect the evaporation rate, but affects on how much of water a parcel of air can contain when saturated which is known by the absolute humidity. Hurricanes are usually happening when the temperature of the sea water west of the Cape Verde islands is over 27 degrees Celsius. If ahead of the path of a hurricane, the sea water temperature drops then it will be less moisture in the air and perhaps the hurricane will fade out. But it is not as simple. How strong a tropical storm is is relative to the difference of temperture between ground level and the top of the troposphere. The greater the difference, the faster the air will rise and the deeper the pressure will be, forcing surrounding air to rush in, thus forming a hurricane force wind. Then there is the fact that the wet adiabatic lapse rate is about half that of dry air. It means that rising moist air cools down slower and therefore rises higher. Hence water is the true fuel of bad weather. But it can't be isolated from the fact that the difference of temperature must be great too. What we often forget is that the tropopause (the border to the stratosphere) is much higher over the equator and therefore, much colder than e.g. the poles.</span>
According to scientists, the first fossil of a jellyfish first appeared approximately 500 million years ago. Or to be more exact, the Cambrian Period.
Hope I could help! :)
The maximum speed of Tim is 16.95 m/s.
The given parameters:
- Mass of the rope, m = 71 kg
- Tension on the rope, T = 220 N
- Coefficient of kinetic friction, = 0.1
- Time of motion, t = 8 s
<h3>What is Newton's second law of motion?</h3>
- Newton's second law of motion states that, the force applied to an object is directly proportional to the product of mass and acceleration of the object.
The net force on Tim is calculated by applying Newton's second law of motion as follows;

Thus, the maximum speed of Tim is 16.95 m/s.
Learn more about net horizontal force here: brainly.com/question/21684583