The answer is 1,600 J.
A work (W) can be expressed as a product of a force (F) and a
distance (d):
W = F · d<span>
We have:
W = ?
F = 20 N = 20 kg*m/s</span>²
d = 80 m
_____
W = 20 kg*m/s² * 80 m
W = 20 * 80 kg*m/s² * m
W = 1600 kg*m²/s²
W = 1600 J
The word displacement implies that an object has moved, or has been displaced. Displacement is defined to be the change in position of an object.
Displacement is defined as the act of moving someone or something from one position to another or the measurement of the volume replaced by something else
Let the data is as following
mass of payload = "m"
mass of Moon = "M"
now we know that we place the payload from the position on the surface of moon to the position of 5r from the surface
So in this case we can say that change in the gravitational potential energy is equal to the work done to move the mass from one position to other
so it is given by

we know that


now from above formula


so above is the work done to move the mass from surface to given altitude
A tomato is apart of the fruit family:) hope this helps!
These anisotropies in the temperature map correspond to areas of varying density fluctuations in the early universe. Eventually, gravity would draw the high-density fluctuations into even denser and more pronounced ones.