Using the equation, pH = − log [H+] , we can solve for [H+] as,
− pH = log [H+] ,
[H+] = 10−pH.
Exponentiate both sides with base 10 to "undo" the common logarithm. The hydrogen ion concentration of blood with pH 7.4 is,
[H+] = 10−7.4 ≈ 0.0000040 = 4.0 × 10−8 M.
Answer:
The solubility of the gaseous solute decreases
Explanation:
As we know, pressure decreases with altitude. This means that, at higher altitudes, the pressure is much lower than it is at sea level.
The solubility of a gas increases with increase in pressure and decreases with decrease in pressure.
Hence, in Denver, Colorado where the elevation is about 5,280 feet above sea level, a gaseous solute is less soluble than it is at sea level due to the lower pressure at such high altitude.
The volume of 0. 250 mole sample of
gas occupy if it had a pressure of 1. 70 atm and a temperature of 35 °C is 3.71 L.
Calculation,
According to ideal gas equation which is known as ideal gas law,
PV =n RT
- P is the pressure of the hydrogen gas = 1.7 atm
- Vis the volume of the hydrogen gas = ?
- n is the number of the hydrogen gas = 0.25 mole
- R is the universal gas constant = 0.082 atm L/mole K
- T is the temperature of the sample = 35°C = 35 + 273 = 308 K
By putting all the values of the given data like pressure temperature universal gas constant and number of moles in equation (i) we get ,
1.7 atm×V = 0.25 mole ×0.082 × 208 K
V = 0.25 mole ×0.082atm L /mole K × 308 K /1.7 atm
V = 3.71 L
So, volume of the sample of the hydrogen gas occupy is 3.71 L.
learn more about ideal gas equation
brainly.com/question/4147359
#SPJ4
Explanation:
Appearance, melting point, density, solubility, polarity