Answer:
Clavulanic acid has two (2) chiral centers.
Explanation:
A chiral center is a center (usually carbon) with four different substituents.
The structure of clavulanic acid is shown in the attachment below.
Consider the labeled diagram in the attachment,
Carbon A is not a chiral carbon because it has two hydrogen atoms attached to it
Carbon B is not a chiral carbon because it has only three substituents
Carbon C is a chiral carbon because it has four different substituents
Carbon D is a chiral carbon because it has four different substituents
Carbon E is not a chiral carbon because it has only three atoms directly attached to it
Carbon F is not a chiral carbon because it has only three atoms directly attached to it
Carbon G is not a chiral carbon because it has two hydrogen atoms attached to it
Carbon H is not a chiral carbon because it has only three substituents
Then, only carbons C and D are chiral carbons.
Hence, clavulanic acid have two (2) chiral centers.
Answer:
The answer would be B.
Explanation:
Ocean water near areas with low evaporation has higher salinity.
if im wrong please tell me .__.
Answer:
Molecules in liquids are held to other molecules by intermolecular interactions, which are weaker than the intramolecular interactions that hold the atoms together within molecules and polyatomic ions.
Answer:
C,D.
Explanation:
Extrusive, or volcanic, igneous rock is produced when magma exits and cools above (or very near) the Earth's surface. These are the rocks that form at erupting volcanoes and oozing fissures.
Bioluminescence is a chemical reaction that takes place in a living organism when the organism emits light. Bioluminescence doesn't consume or produce heat, hence it can be neither endothermic nor exothermic reaction. It emits a heatless light not heat.
For bioluminescence, it could be said that it is an exoenergetic reaction because it uses energy from a chemical reaction to produce light.