The answer is D . I hope this help you :) .
Answer:
84.24 g
Explanation:
Given data:
Mass of oxygen = 75 g
Mass of Al required to react = ?
Solution:
Chemical equation:
4Al + 3O₂ → 2Al₂O₃
Number of moles of oxygen:
Number of moles = mass/ molar mass
Number of moles = 75 g/ 32 g/mol
Number of moles = 2.34 mol
Now we will compare the moles of oxygen with Al.
O₂ : Al
3 : 4
2.34 : 4/3×2.34 = 3.12 mol
Mass of Al required:
Mass = number of moles × molar mass
Mass = 3.12 mol × 27 g/mol
Mass = 84.24 g
The answer should be hydrogen bonding. Water only has oxygen and hydrogen in it, which are both nonmetals, so you know the answer cannot be metallic or ionic. It also cannot be nonpolar because the electronegativity of the oxygens will make the molecule polar. You can also know it is hydrogen bonding because it can only take place when a hydrogen is attached to an oxygen, fluorine, or nitrogen. These bonds are very strong attractions, so the molecules are extremely hard to pull apart, creating a high boiling point. Hope that helps!
The unit 'mW' means milliwatts. It is a unit of work. There are 1,000 milliwatts in a 1 Watt of work. In 4 hours, there are 14,400 seconds.
Work= Energy/time
17 mW * 1 W/1000 mW = Energy/(14,400 seconds)
Solving for energy,
Energy = 244.8 J
Energy/photon = 244.8 J/(6.04×10²⁰) = 4.053×10⁻¹⁹ J/photon
Using the Planck's equation:
E = hc/λ
where h = 6.626×10⁻³⁴ m²·kg/s, c = 3,00,000,000 m/s and λ is the wavelength
4.053×10⁻¹⁹ J/photon = (6.626×10⁻³⁴ m²·kg/s)(3,00,000,000 m/s)/λ
λ = 4.9×10⁻⁷ m or 49 micrometers
Explanation:
the physical and chemical properties of an element are periodic functions of their atomic number.