1. c. 35
2. <span>d. 1.26 x 10^24 molecules
3. </span><span>d. 303.6 g</span>
Answer:
A liquid-fueled rocket has two liquids (liquids are good because of the density, they need less space than a gas to be stored), such that these liquids are called the fuel and the oxidizer.
These liquids are injected into a system that leads to a combustion chamber, where the liquids are mixed (we need to mix the fuel with the oxidizer to enable the combustion of the fuel) and burned to produce thrust.
Some common examples of oxidizers are liquid oxygen, which may be combined with fuels like liquid hydrogen, liquid methane, kerosene and hydrazine.
Other oxidizers are liquid fluorine (which also can be combined with the fuels liquid hydrogen and hydrazine), nitrogen tetroxide (which can be combined whit kerosene, hydrazine and other fuels) and FLOX-70, which can only be combined with kerosene.
The "most commonly used" may depend on the country and the type of liquid propellant ( petroleum, cryogens, and hypergols)
Such that the most common oxidizer may be liquid oxygen, and the most common fuel the kerosene.
Answer:
Solute concentration will afect the rate of a chemical reaction, because you must work with molarity
Explanation:
I think that solute mass may be it can affect the rate of reaction, if you have more mass in a solute, you will also have more moles.
If you want to know more, you have to consider temperature in the reaction and the presence of catalysts. They all, affect reactions.
Answer:
do you have any vocabulary to help you with this or no
Answer:
4.92 L
Explanation:
Rearrange ideal gas law and solve.
Change C to K.
- Hope that helps! Please let me know if you need further explanation.