<span>1. The correct option is ADENOSINE TRIPHOSPHATE, ATP. ATP is the basic unit of energy transfer in the living cells. ATP is the principal energy source for metabolic functions, in the cells, ATP are consumed by endothermic metabolic reactions and they are produced by exothermic metabolic reactions.
2. To form ATP, A THIRD PHOSPHATE GROUP HAS TO BE ADDED TO ADP. ADP has two phosphate groups while ATP has three phosphate group. ADP is usulally converted to ATP by the addition of a single phosphate group.
3. ADP and ATP work together and the two can be interconverted. ATP can be hydrolysed to ADP and ADP can be converted to ATP by the addition of a single phosphate group. When energy is needed inside a cell, the ATP will split off one of its phosphate group and become ADP. This split off process produce a high qunatity of energy which is then available for the cell to use.</span>
Here we have to calculate the heat required to raise the temperature of water from 85.0 ⁰F to 50.4 ⁰F.
10.857 kJ heat will be needed to raise the temperature from 50.4 ⁰F to 85.0 ⁰F
The amount of heat required to raise the temperature can be obtained from the equation H = m×s×(t₂-t₁).
Where H = Heat, s =specific gravity = 4.184 J/g.⁰C, m = mass = 135.0 g, t₁ (initial temperature) = 50.4 ⁰F or 10.222 ⁰C and t₂ (final temperature) = 85.0⁰F or 29.444 ⁰C.
On plugging the values we get:
H = 135.0 g × 4.184 J/g.⁰C×(29.444 - 10.222) ⁰C
Or, H = 10857.354 J or 10.857 kJ.
Thus 10857.354 J or 10.857 kJ heat will be needed to raise the temperature.
Light is one form of energy that travels in electromagnetic waves. This energy is both magnetic and electrical. There are many different types of electromagnetic (EM) waves.
Answer: option E. None because in all the reactions O2 is in excess
Explanation: