Answer:
true
Explanation:
one reason is because plants need sunlight and water because it is their source of food
I disagree with the answer pick of D. If you have a neutral pH 7 solution and you proceed to add a base even with an relatively insignificantly low Kb your solution would still be more basic then acidic. The answer should be b which is true that the base only ionizes slightly in aqueous solution. This is also truer to the definition of what Kb represents.
Answer : The energy released by an electron in a mercury atom to produce a photon of this light must be, 
Explanation : Given,
Wavelength = 
conversion used : 
Formula used :

As, 
So, 
where,
= frequency
h = Planck's constant = 
= wavelength = 
c = speed of light = 
Now put all the given values in the above formula, we get:


Therefore, the energy released by an electron in a mercury atom to produce a photon of this light must be, 
Answer:
There are 17.64% students received B+ grades.
Explanation:
It is given that,
Total number of students in chemistry class is 17
We need to find the percentage received by B+.
Number of students having B+ grades are 3 (from graph)
Required percentage = 
So, there are 17.64% students received B+ grades.