Faraday discovered that a current could be induced in a solenoid (a coil of wire) when "<span>a magnetized rod is being moved through the coil"
Hope this helps!</span>
The electrostatic force between two charged objects is given by

where
k is the Coulomb's constant
q1 is the charge of the first object
q2 is the charge of the second object
r is the separation between the two objects
In our problem:



So if we plug these numbers into the equation, we can find the electrostatic force between the two objects:
Answer:
Photoelectric effect, phenomenon in which electrically charged particles are released from or within a material when it absorbs electromagnetic radiation.
Explanation:
The effect is often defined as the ejection of electrons from a metal plate when light falls on it. In a broader definition, the radiant energy may be infrared, visible, or ultraviolet light, X-rays, or gamma rays; the material may be a solid, liquid, or gas; and the released particles may be ions (electrically charged atoms or molecules) as well as electrons. The phenomenon was fundamentally significant in the development of modern physics because of the puzzling questions it raised about the nature of light—particle versus wavelike behaviour—that were finally resolved by Albert Einstein in 1905. The effect remains important for research in areas from materials science to astrophysics, as well as forming the basis for a variety of useful devices.
Answer:
Potential Energy
Explanation:
Potential energy is the energy stored in an object due to it's position relative to some zero position. An object possesses gravitational potential energy if it is positioned at a height above (or below) the zero height.