Answer:
40000 N/m²
Explanation:
Applying,
P = F/A................... Equation 1
Where P = Pressure, F = Force, A = Area.
From the question,
The force(F) exerted by the person's foot is thesame as it's weight.
F = W = mg............ Equation 2
Where m = mass of the person, g = acceleration due to gravity.
Substitute equation 2 into equation 1
P = mg/A................ Equation 3
Given: m = 60 kg, g = 10 m/s², A = 150 cm² = (150/10000) m² = 0.015 m²
Substitute these values into equation 3
P = (60×10)/0.015
P = 600/0.015
P = 40000 N/m²
Newtons 1st law of motion states that the object will continue to move at its present speed and direction until an outside force acts upon it.
So unless the objects inside the car are restrained, they will continue moving at whatever speed the car is traveling at, even if the car is stopped by a crash.
The answer would be option D "a ball sitting on a shelf." Potential energy is the amount of energy a object has while it's at rest.. (or not moving) Kinetic energy is how much energy a object is while it's moving. So in this case it's option D because a ball sitting on a shelf isn't moving therefore it has potential energy. It's not option A because thats a example of kinetic energy since how the roller coaster is moving. It's not option B because it's kinetic energy because the bike is moving. It's also not option C because it's kinetic energy because the bird is moving.
Hope this helps!
The solution to this ques is available in the image.
Given,
Force= 1N
Mass= 0.11kg
Time= 5sec
Force= mass X accelaration
Accelaration= velocity/ time
Speed=distance/ time
Hence, the speed is 45 m/s and the distance is 225 m.
To know more about speed and distance problems the link is given below:
brainly.com/question/19610984?
#SPJ4
Answer:
V_{a} - V_{b} = 89.3
Explanation:
The electric potential is defined by
= - ∫ E .ds
In this case the electric field is in the direction and the points (ds) are also in the direction and therefore the angle is zero and the scalar product is reduced to the algebraic product.
V_{b} - V_{a} = - ∫ E ds
We substitute
V_{b} - V_{a} = - ∫ (α + β/ y²) dy
We integrate
V_{b} - V_{a} = - α y + β / y
We evaluate between the lower limit A 2 cm = 0.02 m and the upper limit B 3 cm = 0.03 m
V_{b} - V_{a} = - α (0.03 - 0.02) + β (1 / 0.03 - 1 / 0.02)
V_{b} - V_{a} = - 600 0.01 + 5 (-16.67) = -6 - 83.33
V_{b} - V_{a} = - 89.3 V
As they ask us the reverse case
V_{b} - V_{a} = - V_{b} - V_{a}
V_{a} - V_{b} = 89.3