Answer:
Explanation:
Initial speed, v = 10 x 10^3 m/s
Mass of the earth, M = 6 x 10^24 kg
Radius of the earth, R = 6.4 x 10^6 m
Maximum from the surface of earth, h = ?
Let m = Mass of the projectile
Solution:
Potential energy at maximum height = ( Potential + Kinetic energy ) at the surface



=
=



The force applied would be 1.05*9.8 = 10.3 N
the pressure is equal to F/a
area will be πr^2 = 0.002826
thus pressure will be = 10.3/0.002826= 3644.72 N/m^2
Answer:
22 N upward
Explanation:
From the question,
Applying newton's second law of motion
F = m(v-u)/t....................... Equation 1
Where F = Average force exerted by the ground on the ball, m = mass of the baseball, v = final velocity, u = initial velocity, t = time of contact
Note: Let upward be negative and downward be positive
Given: m = 0.14 kg, v = -1.00 m/s, u = 1.2 m/s, t = 0.014 s
Substitute into equation 1
F = 0.14(-1-1.2)/0.014
F = 0.14(-2.2)/0.014
F = 10(-2.2)
F = -22 N
Note the negative sign shows that the force act upward
Answer:
D. Both occur between objects independently whether they are in contact or not.
Explanation:
- The gravitational force is a force that is exerted between two (or more) objects having mass. This force is always attractive and its magnitude is given by

where G is the gravitational constant, m1 and m2 are the two masses, and r is the distance between the two masses.
- The electrical force is a force that is exerted between two (or more) objects having electrical charge. It can be either attractive or repulsive, depending on the sign of the two charges, and its magnitude is given by

where k is the Coulomb's constant, q1 and q2 are the two charges, and r the distance between the two charges.
Looking at both formulas, we see that the two forces are present even when the two objects are not in contact with each other (in fact, r can assume any value in the formula). They are said to be non-contact forces. Therefore, the correct option is
D. Both occur between objects independently whether they are in contact or not.