Answer:
(A) 1.43secs
(B) -2.50m/s^2
Explanation:
A commuter backs her car out of her garage with an acceleration of 1.40m/s^2
(A) When the speed is 2.00m/s then, the time can be calculated as follows
t= Vf-Vo/a
The values given are a= 1.40m/s^2 , Vf= 2.00m/s, Vo= 0
= 2.00-0/1.40
= 2.00/1.40
= 1.43secs
(B) The deceleration when the time is 0.800secs can be calculated as follows
a= Vf-Vo/t
= 0-2.00/0.800
= -2.00/0.800
= -2.50m/s^2
Answer:
e*P_s = 11 W
Explanation:
Given:
- e*P = 1.0 KW
- r_s = 9.5*r_e
- e is the efficiency of the panels
Find:
What power would the solar cell produce if the spacecraft were in orbit around Saturn
Solution:
- We use the relation between the intensity I and distance of light:
I_1 / I_2 = ( r_2 / r_1 ) ^2
- The intensity of sun light at Saturn's orbit can be expressed as:
I_s = I_e * ( r_e / r_s ) ^2
I_s = ( 1.0 KW / e*a) * ( 1 / 9.5 )^2
I_s = 11 W / e*a
- We know that P = I*a, hence we have:
P_s = I_s*a
P_s = 11 W / e
Hence, e*P_s = 11 W
1. neutral particles (neutrons) are in the nucleus
2. nucleus is in the nucleus
3. electron cloud is in the electron cloud
4. positively charged particles (protons) are in the nucleus
5. negatively charged particles (electrons) are in the electron cloud
<span>3 meters east and 15 meters west evens out to 12 meters west. the answer is 12 meters west
</span>
For a full wave bridge you don't want a center tap