Newton's three forces, normal, tension and friction, are present in a surprising number of physical situations
Newton's Laws, that describe the relationship between an obejct and the forces acting upon it, apply in almost every physical situation, from quantum mechanics to electricity.
The correct answer is:
Newton’s laws can explain the forces that occur between objects every day
Answer: A. It gives off a range of wavelengths of electromagnetic radiation that depends on its temperature.
Explanation: Quizzed
Answer:
A.) V = 14 m/s
B.) h = 36.6 m
Explanation:
Given the formula v = √2gh
where g = 9.8m/sec^2 is the acceleration due to gravity.
A.) Determine the impact velocity for an object dropped from a height of 10 m.
Substitute height h in the given formula
V = √2gh
V = √2 × 9.8 × 10
V = √196
V = 14 m/s
b. Determine the height required for an object to have an impact velocity of 26.8 m/sec (~ 60 mph). Round to the nearest tenth of a meter.
Substitute the velocity in the given formula and make height h the subject of formula.
26.8 = √2 × 9.8 × h
Square both sides
718.24 = 19.6h
h = 718.24 / 19.6
h = 36.64 m
h = 36.6 m
P.E= Mass x gravity x height (standard gravity = 10m/s approaximately)
= 200x10x10= 20000j (D)
Answer:
0.532
Explanation:
Your equation to find the second bright interference maximum is gonna be this: d sin (Θ) = m λ
First, find your variables.
λ = 580 · 10^-9
d = 0.000125
m = 2
Next, fill in the equation.
d sin (θ) = m λ
(0.000125) sin (θ) = (2) (580·10^-9)
Then isolate your variable.
θ = arcsin ( (2)(580·10^-9) / (0.000125) )
Run your equation and you will end up with 0.53171246 , which rounds to 0.532.
The main thing you have to watch out for is make sure you are calculating for the bright interference and not the dark interference, as well as checking you're calculating for the maximum, not the minimum.
I hope this helps :D