Answer:
The intermediate is carbocation.
Explanation:
The reaction of alkene with an acid to give alcohol is an electrophilic addition reaction.
In electrophilic reaction, the alkene is being attacked by an alkene.
in case of aqueous acid reaction with alkene , the electrophile is [H⁺].
When the proton attacks the alkene it generates carbocation.
The carbocation generated is formed based on stability of carbocation.
The mechanism is shown in the figure.
I think the awnser would be C. becuase Pure Substances are made of mostly the same material and properties Such as: Nitrogen Gas, Oxygen Gas, Carbon, Iorn, Water, Sugar and Salt.
your answer is B my friend
Fossil fuels about into Earth ice age time
Explanation:

where,
R = Gas constant = 
T = temperature = ![600^oC=[273.15+600]K=873.15 K](https://tex.z-dn.net/?f=600%5EoC%3D%5B273.15%2B600%5DK%3D873.15%20K)
= equilibrium constant at 600°C = 0.900
Putting values in above equation, we get:


The ΔG° of the reaction at 764.85 J/mol is 764.85 J/mol.
Equilibrium constant at 600°C = 
Equilibrium constant at 1000°C = 
![T_1=[273.15+600]K=873.15 K](https://tex.z-dn.net/?f=T_1%3D%5B273.15%2B600%5DK%3D873.15%20K)
![T_2=[273.15+1000]K=1273.15 K](https://tex.z-dn.net/?f=T_2%3D%5B273.15%2B1000%5DK%3D1273.15%20K)
![\ln \frac{K_2}{K_1}=\frac{\Delta H^o}{R}\times [\frac{1}{T_1}-\frac{1}{T_2}]](https://tex.z-dn.net/?f=%5Cln%20%5Cfrac%7BK_2%7D%7BK_1%7D%3D%5Cfrac%7B%5CDelta%20H%5Eo%7D%7BR%7D%5Ctimes%20%5B%5Cfrac%7B1%7D%7BT_1%7D-%5Cfrac%7B1%7D%7BT_2%7D%5D)
![\ln \frac{0.396}{0.900}=\frac{\Delta H^o}{8.314 J/mol K}\times [\frac{1}{873.15 K}-\frac{1}{1273.15 K}]](https://tex.z-dn.net/?f=%5Cln%20%5Cfrac%7B0.396%7D%7B0.900%7D%3D%5Cfrac%7B%5CDelta%20H%5Eo%7D%7B8.314%20J%2Fmol%20K%7D%5Ctimes%20%5B%5Cfrac%7B1%7D%7B873.15%20K%7D-%5Cfrac%7B1%7D%7B1273.15%20K%7D%5D)

The ΔH° of the reaction at 600 C is -18,969.30 J/mol.
ΔG° = ΔH° - TΔS°
764.85 J/mol = -18,969.30 J/mol - 873.15 K × ΔS°
ΔS° = -22.60 J/K mol
The ΔS° of the reaction at 600 C is -22.60 J/K mol.

Partial pressure of carbon dioxide = 
Partial pressure of carbon monoxide = 
Where
mole fraction of carbon dioxide and carbon monoxide gas.
The expression of
is given by:








Mole fraction of carbon dioxide at 600°C is 0.474.