1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Setler [38]
3 years ago
14

A 25.0 mL solution of 0.100 M CH3COOH is titrated with a 0.200 M KOH solution. Calculate the pH after the following additions of

the KOH solution:
(a) 0.0 mL,
(b) 5.0 mL,
(c) 10.0 mL,
(d) 12.5 mL,
(e) 15.0 mL
Chemistry
1 answer:
zaharov [31]3 years ago
8 0

Answer:

a) pH = 2.88

b) pH = 4.598

c) pH = 5.503

d) pH = 8.788

e) pH = 12.097

Explanation:

  • CH3COOH ↔ CH3COO-  +  H3O+

∴ Ka = 1.75 E-5 = [H3O+]*[CH3COO-] / [CH3COOH]

a) 0.0 mL KOH:

mass balance:

⇒ <em>C</em> CH3COOH = [CH3COOH] + [CH3COO-] = 0.100 M

charge balance:

⇒ [H3O+] = [CH3COO-]

⇒ 1.75 E-5 = [H3O+]²/(0.100 - [H3O+])

⇒ [H3O+]² + 1.75 E-5[H3O+] - 1.75 E-6 = 0

⇒ [H3O+] = 1.314 E.3 M

∴ pH = - Log [H3O+]

⇒ pH = 2.88

b) 5.0 mL KOH:

  • CH3COOH + KOH ↔ CH3COONa + H2O

∴ <em>C </em>CH3COOH = ((0.025)(0.100) - (5 E-3)(0.200))/(0.025+5 E-3)

⇒ <em>C</em> CH3COOH = 0.05 M

∴ <em>C</em> KOH = ((5 E-3)(0,200))/(0.025+5 E-3) = 0.033 M

mass balance:

⇒ <em>C</em> CH3COOH + <em>C</em> KOH = [CH3COOH] + [CH3COO-] = 0.05 + 0.033 = 0.083 M

charge balance:

⇒ [H3O+] + [K+] = [CH3COO-]

⇒ [CH3COO-] = [H3O+] + 0.033

⇒ 1.75 E-5 = ([H3O+]*([H3O+] + 0.033))/(0.083 - ([H3O+] + 0.033))

⇒ 1.75 E-3 = ([H3O+]² + 0.033[H3O+])/(0.05 - [H3O+])

⇒ 8.75 E-7 - 1.75 E-5[H3O+] = [H3O+]² + 0.033[H3O+]

⇒ [H3O+]² +0.03302[H3O+] - 8.75 E-7 = 0

⇒ [H3O+] = 2.523 E-5 M

⇒ pH = 4.598

equivalent point:

  • (<em>C</em>*V)acid = (<em>C</em>*V)base

⇒ (0.100 M)*(0.025 L) = (0.200 M)( Vbase)

⇒ Vbase = 0.0125L = 12.5 mL

c) 10.0 mL KOH:

∴ <em>C</em> CH3COOH = 0.0143 M

∴ <em>C</em> KOH =  0.057 M

as in the previous point, starting from the mass and charge balances, we obtain:

⇒ [H3O+] = 3.1386 E-6 M

⇒ pH = 5.503

d) 12.5 mL KOH:

at the equivalence point, there is complete salt formation, then the pH is calculated through the salt:

  • CH3COO- + H2O ↔ CH3COOH - OH-

∴ Kw/Ka = 1 E-14/1.75 E-5 = 5.714 E-10 = [CH3COOH]*[OH-]/[CH3COO-]

∴ [CH3COO-] = (0.025)(0.100))/(0.025+0.0125) = 0.066 M

mass balance:

⇒ 0.066 = [CH3COOH] + [CH3COO-]..........(1)

charge balance:

⇒ [K+] = [OH-] + [CH3COO-] = 0.066 M.........(2)

∴ [K+] = <em>C</em> CH3COO- = 0.066 M

(1) = (2):

⇒ [OH-] = [CH3COOH].......(3)

⇒ 5.714 E-10 = [OH-]² / (0.066 - [OH-])

⇒ [OH-]² + 5.714 E-10[OH-] - 3.7712 E-11 = 0

⇒ [OH-] = 6.1408 e-6 m

⇒ pOH = 5.212

⇒ pH = 14 - pOH = 8.788

d) 15.0 mL KOH:

after the equivalence point there is salt and excess base (OH-); ph is calculated from excess base:

⇒ <em>C</em> KOH = ((0.015)(0.200) - (0.025)(0.100)) / (0.025 + 0.015) = 0.0125 M

⇒ [OH-] ≅ <em>C</em> KOH = 0.0125 M

⇒ pOH = 1.903

⇒ pH = 12.097

You might be interested in
Which one of the following statements BEST describes a chemical reaction?
Natalija [7]

Answer: The correct statement is (A new substance is formed and the process can usually NOT be undone.)

Explanation:

A chemical reaction is simply defined as the reaction between two or more elements in which a new substance is formed and the process can usually not be undone. Different types of chemical reaction includes:

-- combination reaction: this occurs when two or more reactants form a product. For example: In the burning of coal, It combines with oxygen to produce carbon dioxide. Also in the burning of wood, carbon dioxide is given off and ashes are formed. Because new substance is being formed, they often can't be undone. The ashes formed can't be changed back into wood. Other types of chemical reaction are listed below.

-- Decomposition reaction

-- Single displacement reaction

-- Double displacement reaction

-- combustion reaction

-- Redox reaction

For the product of a chemical reaction to be undone (reversed), it has to undergo another chemical process different from the one that produced it.

8 0
2 years ago
Suppose you have a solution that is either an acid or a base. It doesn’t react with any metals. Is the pH of the solution more l
OverLord2011 [107]
Its more likely to be a four
4 0
3 years ago
Is water wet? or is it just an experience?
polet [3.4K]
WATER is wet to make it a more marketable commodity
7 0
3 years ago
To test the effectiveness of a gunpowder mixture, 1 gram was exploded under controlled STP conditions, and the reaction chamber
Alekssandra [29.7K]

Answer:

1.3 × 10³ cm³

Explanation:

The gas occupies a volume of V₁ = 310 cm³ under standard temperature and pressure (STP), that is, T₁ = 273.15 K and P₁ = 1.0 atm. In order to find the volume V₂ under different conditions we can use the combined gas law formula.

\frac{P_{1}.V_{1}}{T_{1}} =\frac{P_{2}.V_{2}}{T_{2}} \\V_{2}=\frac{P_{1}.V_{1}.T_{2}}{T_{1}.P_{2}}=\frac{1.0atm\times 310cm^{3} \times 2473K }{273.15K \times 2.1atm} =1.3 \times 10^{3} cm^{3}

7 0
3 years ago
A 50/50 blend of engine coolant and water (by volume) is usually used in an automobile's engine cooling system. If a car's cooli
Diano4ka-milaya [45]

Answer:

\large \boxed{109.17 \, ^{\circ}\text{C}}

Explanation:

Data:

50/50 ethylene glycol (EG):water

V = 4.70 gal

ρ(EG) = 1.11 g/mL

ρ(water) = 0.988 g/mL

Calculations:

The formula for the boiling point elevation ΔTb is

\Delta T_{b} = iK_{b}b

i is the van’t Hoff factor —  the number of moles of particles you get from 1 mol of solute. For EG, i = 1.

1. Moles of EG

\rm n = 0.50 \times \text{4.70 gal} \times \dfrac{\text{3.785 L}}{\text{1  gal}} \times \dfrac{\text{1000 mL}}{\text{1 L}} \times \dfrac{\text{1.11 g}}{\text{1 mL}} \times \dfrac{\text{1 mol}}{\text{62.07 g}} = \text{159 mol}

2. Kilograms of water

m = 0.50 \times \text{4.70 gal} \times \dfrac{\text{3.785 L}}{\text{1  gal}} \times \dfrac{\text{998 g}}{\text{1 L}} \times \dfrac{\text{1 kg}}{\text{1000 g}} = \text{8.88 kg}

3. Molal concentration of EG

b =  \dfrac{\text{159 mol}}{\text{8.88 kg}} = \text{17.9 mol/kg}

4. Increase in boiling point

\rm \Delta T_{b} = iK_{b}b = 1 \times 0.512 \, \, ^{\circ}\text{C} \cdot kg \cdot mol^{-1} \, \times 17.9 \cdot mol \cdot kg^{-1} = 9.17 \, ^{\circ}\text{C}

5. Boiling point

\rm T_{b} = T_{b}^{\circ} + \Delta T_{b} = 100.00 \, ^{\circ}\text{C} + 9.17 \, ^{\circ}\text{C} = \mathbf{109.17 \, ^{\circ}C}\\\rm \text{The boiling point of the solution is $\large \boxed{\mathbf{109.17 \, ^{\circ}C}}$}

7 0
3 years ago
Other questions:
  • What is the chemical reaction for Mg + NaOH also with the ionic equations and subscripts?
    6·1 answer
  • 11 swimming pool water can be kept free of harmful bacteria by adding aqueous sodium chlorate(i),naocl. this reacts with water t
    15·1 answer
  • Suppose you want to test the results of a transformation by growing Escherichia coli cells in LB medium containing ampicillin as
    11·1 answer
  • Why doesn’t NaCl satisfy our thirst when drinking it?
    12·2 answers
  • Which drug is derived from the hemp plant?
    13·1 answer
  • Can someone help me like please
    10·1 answer
  • Many children are uncomfortable around white lab coats. Specifically explain why this occurs in what a doctor or dentist could d
    14·1 answer
  • By renaming the anion, we cut off the end of the word and added what three letters?
    7·1 answer
  • 2. Pick two materials that float from the table above.
    11·1 answer
  • Which member of each of the following pairs would you expect to have the higher melting point? Explain your reasoning. (1 each)
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!