Answer: The particles in a solid are packed very close to each other.
Answer: A boron atom has 2 electrons at the first energy level and 3 electrons at the second energy level.
Answer:
[OH⁻] = 4.3 x 10⁻¹¹M in OH⁻ ions.
Explanation:
Assuming the source of the carbonate ion is from a Group IA carbonate salt (e.g.; Na₂CO₃), then 0.115M Na₂CO₃(aq) => 2(0.115)M Na⁺(aq) + 0.115M CO₃²⁻(aq). The 0.115M CO₃²⁻ then reacts with water to give 0.115M carbonic acid; H₂CO₃(aq) in equilibrium with H⁺(aq) and HCO₃⁻(aq) as the 1st ionization step.
Analysis:
H₂CO₃(aq) ⇄ H⁺(aq) + HCO₃⁻(aq); Ka(1) = 4.3 x 10⁻⁷
C(i) 0.115M 0 0
ΔC -x +x +x
C(eq) 0.115M - x x x
≅ 0.115M
Ka(1) = [H⁺(aq)][HCO₃⁻(aq)]/[H₂CO₃(aq)] = [(x)(x)/(0.115)]M = [x²/0.115]M
= 4.3 x 10⁻⁷ => x = [H⁺(aq)]₁ = SqrRt(4.3 x 10⁻⁷ · 0.115)M = 2.32 x 10⁻⁴M in H⁺ ions.
In general, it is assumed that all of the hydronium ion comes from the 1st ionization step as adding 10⁻¹¹ to 10⁻⁷ would be an insignificant change in H⁺ ion concentration. Therefore, using 2.32 x 10⁻⁴M in H⁺ ion concentration, the hydroxide ion concentration is then calculated from
[H⁺][OH⁻] = Kw => [OH⁻] = (1 x 10⁻¹⁴/2.32 x 10⁻⁴)M = 4.3 x 10⁻¹¹M in OH⁻ ions.
________________________________________________________
NOTE: The 2.32 x 10⁻⁴M value for [H⁺] is reasonable for carbonic acid solution with pH ≅ 3.5 - 4.0.
Answer:
Q sln = 75.165 J
Explanation:
a constant pressure calorimeter:
∴ m sln = m Ba(OH)2 + m HCl
∴ molar mass Ba(OH)2 = 171.34 g/mol
∴ mol Ba(OH)2 = (0.06 L)(0.3 mol/L) = 0.018 mol
⇒ mass Ba(OH)2 = (0.018 mol)(171.34 g/mol) = 3.084 g
∴ molar mass HCl = 36.46 g/mol
∴ mol HCl = (0.06 L)(0.60 mol/L) = 0.036 mol
⇒ mass HCl = (0.036 mol)(36.46 g/mol) = 1.313 g
⇒ m sln = 3.084 g + 1.313 g = 4.3966 g
specific heat (C):
∴ C sln = C H2O = 4.18 J/g°C
∴ ΔT = 26.83°C - 22.74°C = 4.09°C
heat absorbed (Q):
⇒ Q sln = (4.3966 g)(4.18 J/g°C)(4.09°C)
⇒ Q sln = 75.165 J
Answer:
the catalyst is for activation energy