1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
pickupchik [31]
2 years ago
11

To calibrate the calorimeter electrically, a constant voltage of 3.6 V is applied and a current of 2.6 A flows for a period of 3

50 seconds. If the temperature rises from 20.3°C to 29.1°C, what is the heat capacity of the calorimeter?
Physics
1 answer:
iren [92.7K]2 years ago
5 0

Answer:

372.3 J/^{\circ}C

Explanation:

First of all, we need to calculate the total energy supplied to the calorimeter.

We know that:

V = 3.6 V is the voltage applied

I = 2.6 A is the current

So, the power delivered is

P=VI=(3.6)(2.6)=9.36 W

Then, this power is delivered for a time of

t = 350 s

Therefore, the energy supplied is

E=Pt=(9.36)(350)=3276 J

Finally, the change in temperature of an object is related to the energy supplied by

E=C\Delta T

where in this problem:

E = 3276 J is the energy supplied

C is the heat capacity of the object

\Delta T =29.1^{\circ}-20.3^{\circ}=8.8^{\circ}C is the change in temperature

Solving for C, we find:

C=\frac{E}{\Delta T}=\frac{3276}{8.8}=372.3 J/^{\circ}C

You might be interested in
Which of these experiments tests a chemical property of an object??
Ilia_Sergeevich [38]
<span>B. shining a bright light on the objects and testing for decomposition </span> <span>      

In explanation, chemical property is a characteristic of a certain substance came from an outcome due to chemical change or reaction. In the situation above, more specifically toxicity is involved in the chemical property/change. Hence, when the object is tested for decomposition. Like for an example of decomposition simply in metals, rusting. Rusting a process of degeneration of metals. Here it works the same. Toxicity is how much damage did a certain entity do to the object. </span>



8 0
2 years ago
Read 2 more answers
How does your power output in climbing the stairs compare to the power output of a 100-watt light bulb? if your power could have
cricket20 [7]
1) Assuming an adult person has an average mass of m=80 kg, and assuming it takes about 30 seconds to climb 5 meters of stairs, the energy used by the person is
E=mgh=(80 kg)(9.81 m/s^2)(5 m)=3924 J
So the power output is 
P= \frac{E}{t}= \frac{3924 J}{30 s} \sim 130 W

And since the estimate we made is very rough, we can say that the power output of the person is comparable to the power output of the light bulb of 100 W.

2) Based on the results we found in the previous part of the exercise, since the power output of the person is comparable to the power output of 1 light bulb of 100 W, we can say that the person could have kept burning only one 100-W light bulb during the climb.
6 0
2 years ago
Read 2 more answers
The entropy of an isolated system must be conserved, so it never changes.a. Trueb. Fasle
Snowcat [4.5K]

Answer:

B: False

Explanation:

The second law of thermodynamics states that: the entropy of an isolated system will never decrease because isolated systems always tend to evolve towards thermodynamic equilibrium which is a state with maximum entropy.

Thus, it means that the entropy change will always be positive.

Therefore, the given statement in the question is false.

6 0
2 years ago
Why the center of Newton rings is dark?​
RideAnS [48]
The point of contact the path difference is zero but one of the interfering ray is reflected so the effective path difference becomes λ/2 thus the condition of minimum intensity is created in the center.
3 0
3 years ago
Read 2 more answers
3.
ratelena [41]

Answer:

1.84 kJ  (kilojoules)

Explanation:

A specific heat of 0.46 J/g Cº means that it takes 0.46 Joules of energy to raise the temperature of 1 gram of iron by 1 Cº.

If we want to heat 50 g of iron from 20° C to 100° C, we can make the following calculation:

Heat = (specific heat)*(mass)*(temp change)

Heat = (0.46 J/g Cº)*(50g)*(100° C -  20° C)

[Note how the units cancel to yield just Joules]

Heat = 1840 Joules, or 1.84 kJ

[Note that the number is positive:  Energy is added to the system.  If we used cold iron to cool 50g of 100° C water, the temperature change would be (Final - Initial) or (20° C - 100° C).  The number is -1.84 kJ:  the negative means heat was removed from the system (the iron).

8 0
2 years ago
Other questions:
  • A _____ space zone is one that is obstructed in some way
    12·2 answers
  • What voltage would be measured across the 45 ohm resistor?
    9·2 answers
  • What problems would we have if Pascal had failed to give the Pascal's law? Write some points.
    11·2 answers
  • Which of the following frictionless ramps (A, B, or C) will give the ball the greatest speed at the bottom of the ramp? Explain.
    12·2 answers
  • A 5.45-g combustible sample is burned in a calorimeter. the heat generated changes the temperature of 555 g of water from 20.5°c
    5·1 answer
  • How large a current would a very long, straight wire have to carry so that the magnetic field 2.20 cm from the wire is equal to
    13·1 answer
  • Sound waves move the fastest through which medium?
    5·2 answers
  • Marco was looking at this picture of two boats sitting differently in the water. He decided to compare the way the two boats sit
    10·1 answer
  • 1) Determine the magnitude of energy for each of the blanks on the diagram. Give the correct values for 1A, 1B, and 1C.
    13·1 answer
  • ( Basic physics science question)
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!