1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
4vir4ik [10]
3 years ago
10

A cylinder rotating about its axis with a constant angular acceleration of 1.6 rad/s 2 starts from rest at t = 0. At the instant

when it has turned through 0.40 radian, what is the magnitude of the total linear acceleration of a point on the rim (radius = 13 cm)?
Physics
1 answer:
umka21 [38]3 years ago
4 0

Answer:

a = 0.27 rad/s^2

Explanation:

First we will find the time t using the next equation:

θ = \frac{1}{2}at^2

where θ is the angle in radians and a is the angular aceleration. So:

0.4 = \frac{1}{2}(1.6)t^2

Solving for t:

t = 0.707s

Second, with that time, we will find the angular velocity w using the next equation:

w = at

where a is the angular aceleration, so:

w = (1.6)(0.707s)

w = 1.1312 rad/s

Now, the radial aceleration a_r is calcualted as:

a_r = w^2r

a_r = (1.1312)^2(0.13)

a_r = 0.166 rad/s^2

Additionally, the tangential aceleration a_t is calculated as::

a_t = ar

a_t = (1.6)(0.13)

a_t = 0.208 rad/s^2

Finally, by pythagoras theorem, we find the total linear acceleration as:

a = \sqrt{a_r^{2}+a_t^2 }

a = \sqrt{(0.208)^2+(0.166)^2 }

a = 0.27 rad/s^2

You might be interested in
How do you know about Black Holes?
kondaur [170]

Answer: From space/ astronauts

Explanation:

A black hole is a place in space where gravity pulls so much that even light can not get out. The gravity is so strong because matter has been squeezed into a tiny space. This can happen when a star is dying.

Because no light can get out, people can't see black holes. They are invisible. Space telescopes with special tools can help find black holes. The special tools can see how stars that are very close to black holes act differently than other stars.

6 0
3 years ago
Read 2 more answers
A(n) _______ is a pure substance that can't be broken down into simpler substances by chemical or physical means. A. element
Lyrx [107]
An element is a pure substance that cant be broken down into simpler substances by chemical or physical means. hope it helps :)
3 0
3 years ago
What is the ability to complete extended periods of physical activity?
Galina-37 [17]

Answer:

D) WELLNESS

Explanation:

3 0
3 years ago
Read 2 more answers
Consider three identical metal spheres, A, B, and C. Sphere A carries a charge of +6q. Sphere B caries a charge of-2q. Sphere C
miskamm [114]
<h2>20. How much charge is on sphere B after A and B touch and are separated?</h2><h3>Answer:</h3>

\boxed{q_{B}=+2q}

<h3>Explanation:</h3>

We'll solve this problem by using the concept of electric potential or simply called potential V, which is <em>the energy per unit charge, </em>so the potential V at any point in an electric field with a test charge q_{0} at that point is:

V=\frac{U}{q_{0}}

The potential V due to a single point charge q is:

V=k\frac{q}{r}

Where k is an electric constant, q is value of point charge and r is  the distance from point charge to  where potential is measured. Since, the three spheres A, B and C are identical, they have the same radius r. Before the sphere A and B touches we have:

V_{A}=k\frac{q_{A}}{r_{A}} \\ \\ V_{B}=k\frac{q_{B}}{r_{A}} \\ \\ But: \\ \\ \ r_{A}=r_{B}=r

When they touches each other the potential is the same, so:

V_{A}= V_{B} \\ \\ k\frac{q_{A}}{r}=k\frac{q_{B}}{r} \\ \\ \boxed{q_{A}=q_{B}}

From the principle of conservation of charge <em>the algebraic sum of all the electric charges in any closed system is constant. </em>So:

q_{A}+q_{B}=q \\ \\ q_{A}=+6q \ and \ q_{B}=-2q \\ \\ So: \\ \\ \boxed{q_{A}+q_{B}=+4q}

Therefore:

(1) \ q_{A}=q_{B} \\ \\ (2) \ q_{A}+q_{B}=+4q \\ \\ (1) \ into \ (2): \\ \\ q_{A}+q_{A}=+4q \therefore 2q_{A}=+4q \therefore \boxed{q_{A}=q_{B}=+2q}

So after A and B touch and are separated the charge on sphere B is:

\boxed{q_{B}=+2q}

<h2>21. How much charge ends up on sphere C?</h2><h3>Answer:</h3>

\boxed{q_{C}=+1.5q}

<h3>Explanation:</h3>

First: A and B touches and are separated, so the charges are:

q_{A}=q_{B}=+2q

Second:  C is then touched to sphere A and separated from it.

Third: C is to sphere B and separated from it

So we need to calculate the charge that ends up on sphere C at the third step, so we also need to calculate step second. Therefore, from the second step:

Here q_{A}=+2q and C carries no net charge or q_{C}=0. Also, r_{A}=r_{C}=r

V_{A}=k\frac{q_{A}}{r} \\ \\ V_{C}=k\frac{q_{C}}{r}

Applying the same concept as the previous problem when sphere touches we have:

k\frac{q_{A}}{r} =k\frac{q_{C}}{r} \\ \\ q_{A}=q_{C}

For the principle of conservation of charge:

q_{A}+q_{C}=+2q \\ \\ q_{A}=q_{C}=+q

Finally, from the third step:

Here q_{B}=+2q \ and \ q_{C}=+q. Also, r_{B}=r_{C}=r

V_{B}=k\frac{q_{B}}{r} \\ \\ V_{C}=k\frac{q_{C}}{r}

When sphere touches we have:

k\frac{q_{B}}{r} =k\frac{q_{C}}{r} \\ \\ q_{B}=q_{C}

For the principle of conservation of charge:

q_{B}+q_{C}=+3q \\ \\ q_{A}=q_{C}=+1.5q

So the charge that ends up on sphere C is:

q_{C}=+1.5q

<h2>22. What is the total charge on the three spheres before they are allowed to touch each other.</h2><h3>Answer:</h3>

+4q

<h3>Explanation:</h3>

Before they are allowed to touch each other we have that:

q_{A}=+6q \\ \\ q_{B}=-2q \\ \\ q_{C}=0

Therefore, for the principle of conservation of charge <em>the algebraic sum of all the electric charges in any closed system is constant, </em>then this can be expressed as:

q_{A}+q_{B}+q_{C}=+6q -2q +0 \\ \\ \therefore q_{A}+q_{B}+q_{C}=+4q

Lastly, the total charge on the three spheres before they are allowed to touch each other is:

+4q

8 0
3 years ago
From a window that is 20 m from the ground a stone with a speed of 10m / s is thrown vertically upwards. Calculate:
Oduvanchick [21]

a)

consider the motion in upward direction as positive and down direction as negative

Y₀ = initial position of the stone = 20 m

v₀ = initial velocity of the stone = 10 m/s

a = acceleration = - 9.8 m/s²

Y = final position of the stone when it reach the maximum height

v = final velocity at the maximum height = 0 m/s

t = time taken to reach the maximum height

Using the equation

v² = v₀² + 2 a (Y - Y₀)

0² = 10² + 2 (- 9.8) (Y - 20)

Y = 25.1 m


also using the equation

v = v₀ + a t

inserting the values

0 = 10 + (- 9.8) t

t = 1.02 sec


b)

consider the motion in upward direction as positive and down direction as negative

Y₀ = initial position of the stone = 20 m

v₀ = initial velocity of the stone = 10 m/s

a = acceleration = - 9.8 m/s²

Y = final position of the stone when it reach the ground = 0 m

t = time taken to reach the ground

Using the equation

Y = Y₀ + v₀ t + (0.5) a t²

0 = 20 + 10 t + (0.5) (- 9.8) t²

t = 3.3 sec

3 0
3 years ago
Other questions:
  • What is the pressure at the bottom<br> of a 2.50 m deep pool of water?
    8·1 answer
  • Compared to the buoyant force of the atmosphere on a 1-kilogram helium-filled balloon, the buoyant force of the atmosphere on a
    14·2 answers
  • A sample of gas has an initial volume of 4.5 L at a pressure of 754 mmHg . Part A If the volume of the gas is increased to 8.5 L
    8·1 answer
  • How much does a 0.15 kg baseball weigh on earth?
    11·1 answer
  • When a 5.0-kilogram cart moving with a speed of 2.8 meters per second on a horizontal surface collides with a 2.0 kilogram cart
    14·1 answer
  • True or false gravity is a force
    11·1 answer
  • A hungry 11.5 kg predator fish is coasting from west to east at 75.0 cm/s when it suddenly swallows a 1.25 kg fish swimming from
    11·1 answer
  • Now it's your turn
    14·1 answer
  • Helphelphelp due in 5 minutes answer the question below
    5·1 answer
  • Using a mass of 1. 8 g and the volume displaced by the sample, calculate the sample's density. Question 17 options: 0. 17 g/mL 0
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!