1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Korvikt [17]
3 years ago
6

Consider three identical metal spheres, A, B, and C. Sphere A carries a charge of +6q. Sphere B caries a charge of-2q. Sphere C

carries no net charge. Spheres A and B are touc separated. Sphere C is then touched to sphere A and separated from it. Last, sphere C is to sphere B and separated from it. hed together and then uched to 20. How much charge is on sphere B after A and B touch and are separated? 21. How much charge ends up on sphere C? on the three spheres (b) before they are allowed to touch cach other? three 22. What is the total charge A) +1q
Physics
1 answer:
miskamm [114]3 years ago
8 0
<h2>20. How much charge is on sphere B after A and B touch and are separated?</h2><h3>Answer:</h3>

\boxed{q_{B}=+2q}

<h3>Explanation:</h3>

We'll solve this problem by using the concept of electric potential or simply called potential V, which is <em>the energy per unit charge, </em>so the potential V at any point in an electric field with a test charge q_{0} at that point is:

V=\frac{U}{q_{0}}

The potential V due to a single point charge q is:

V=k\frac{q}{r}

Where k is an electric constant, q is value of point charge and r is  the distance from point charge to  where potential is measured. Since, the three spheres A, B and C are identical, they have the same radius r. Before the sphere A and B touches we have:

V_{A}=k\frac{q_{A}}{r_{A}} \\ \\ V_{B}=k\frac{q_{B}}{r_{A}} \\ \\ But: \\ \\ \ r_{A}=r_{B}=r

When they touches each other the potential is the same, so:

V_{A}= V_{B} \\ \\ k\frac{q_{A}}{r}=k\frac{q_{B}}{r} \\ \\ \boxed{q_{A}=q_{B}}

From the principle of conservation of charge <em>the algebraic sum of all the electric charges in any closed system is constant. </em>So:

q_{A}+q_{B}=q \\ \\ q_{A}=+6q \ and \ q_{B}=-2q \\ \\ So: \\ \\ \boxed{q_{A}+q_{B}=+4q}

Therefore:

(1) \ q_{A}=q_{B} \\ \\ (2) \ q_{A}+q_{B}=+4q \\ \\ (1) \ into \ (2): \\ \\ q_{A}+q_{A}=+4q \therefore 2q_{A}=+4q \therefore \boxed{q_{A}=q_{B}=+2q}

So after A and B touch and are separated the charge on sphere B is:

\boxed{q_{B}=+2q}

<h2>21. How much charge ends up on sphere C?</h2><h3>Answer:</h3>

\boxed{q_{C}=+1.5q}

<h3>Explanation:</h3>

First: A and B touches and are separated, so the charges are:

q_{A}=q_{B}=+2q

Second:  C is then touched to sphere A and separated from it.

Third: C is to sphere B and separated from it

So we need to calculate the charge that ends up on sphere C at the third step, so we also need to calculate step second. Therefore, from the second step:

Here q_{A}=+2q and C carries no net charge or q_{C}=0. Also, r_{A}=r_{C}=r

V_{A}=k\frac{q_{A}}{r} \\ \\ V_{C}=k\frac{q_{C}}{r}

Applying the same concept as the previous problem when sphere touches we have:

k\frac{q_{A}}{r} =k\frac{q_{C}}{r} \\ \\ q_{A}=q_{C}

For the principle of conservation of charge:

q_{A}+q_{C}=+2q \\ \\ q_{A}=q_{C}=+q

Finally, from the third step:

Here q_{B}=+2q \ and \ q_{C}=+q. Also, r_{B}=r_{C}=r

V_{B}=k\frac{q_{B}}{r} \\ \\ V_{C}=k\frac{q_{C}}{r}

When sphere touches we have:

k\frac{q_{B}}{r} =k\frac{q_{C}}{r} \\ \\ q_{B}=q_{C}

For the principle of conservation of charge:

q_{B}+q_{C}=+3q \\ \\ q_{A}=q_{C}=+1.5q

So the charge that ends up on sphere C is:

q_{C}=+1.5q

<h2>22. What is the total charge on the three spheres before they are allowed to touch each other.</h2><h3>Answer:</h3>

+4q

<h3>Explanation:</h3>

Before they are allowed to touch each other we have that:

q_{A}=+6q \\ \\ q_{B}=-2q \\ \\ q_{C}=0

Therefore, for the principle of conservation of charge <em>the algebraic sum of all the electric charges in any closed system is constant, </em>then this can be expressed as:

q_{A}+q_{B}+q_{C}=+6q -2q +0 \\ \\ \therefore q_{A}+q_{B}+q_{C}=+4q

Lastly, the total charge on the three spheres before they are allowed to touch each other is:

+4q

You might be interested in
Two masses are connected by a string which passes over a pulley with negligible mass and friction. One mass hangs vertically and
lora16 [44]
The tension in the string and the acceleration must be equal for both masses. (See the free body diagrams)





8 0
3 years ago
A disturbance sends ripples across water in a tub. These ripples are an example of a rarefaction
Zielflug [23.3K]
The appropriate response is a Surface wave. It is a seismic wave that goes over the surface of the Earth rather than through it. Surface waves as a rule have bigger amplitudes and longer wavelengths than body waves, and they travel more gradually than body waves do. Adore waves and Rayleigh waves are sorts of surface waves.
3 0
3 years ago
Summarize the steps you might use to carry out an investigation using scientific methods
melomori [17]
1. Make an observation
2. Form a question
3. Form a hypothesis
4. Conduct an experiment
5. Analyze the data and draw your conclusion
8 0
3 years ago
A 5.30 g bullet moving at 963 m/s strikes a 610 g wooden block at rest on a frictionless surface. The bullet emerges, traveling
Tems11 [23]

Answer:

a) V_{wf} = 4.67m/s

b) V = 8.29 m/s

Explanation:

Givens:

The bullet is 5.30g moving at 963m/s and its speed reduced to 426m/s. The wooden block is 610g.

a) From conservation of linear momentum

Pi = Pf

m_{b}V{b_{i} }  + V_{wi}  = m_{w} V_{wf} + m_{b}V_{bf}

where m_{b},V{b_{i} are the mass and the initial velocity of the bullet, m_{w} and V_{wi} are the mass and the initial velocity of the wooden block, and V_{wf} and V_{bf} are the final velocities of the wooden block and the bullet

The wooden block is initial at rest (V_{wi} = 0) this yields

m_{b}V{b_{i} }  = m_{w} V_{wf} + m_{b}V_{bf}

By solving for V_{wf} adn substitute the givens

V_{wf} = \frac{m_{b}V_{bi} - m_{b} V_{bf}    }{m_{W} }

= \frac{5.3(g)(963(m/s)-426(m/s) }{610(g)}

V_{wf} = 4.67m/s

b) The center of mass speed is defined as

V = \frac{m_{b} }{m_{b}+m_{w} } V_{bi}

substituting:

V = \frac{5.3(g)}{5.3(g)+610(g)} X 963(m/s)

V = 8.29 m/s

7 0
3 years ago
In this circuit the resistance R1 is 7 Ω and R2 is 3 Ω. If this combination of resistors were to be replaced by a single resisto
Scilla [17]

Answer:

Series combination:

Equivalent resistance =10Ω

Parallel combination:

Equivalent resistance =\frac{21}{10} \Omega

Explanation:

Resistance: Resistance is the ratio of voltage to the current.

R=\frac{V}{I}

R = resistance

I = current

V= potential difference(voltage)

There are two types of resistance combinations.

  1. series combination
  2. parallel combination.

Series combination: If the ending point of one resistance is connected to the starting point of other resistance that combination is known as series combination.

If R₁,R₂ and R₃  are connected in series combination.

Then equivalent resistance = R₁+R₂+R₃

Parallel combination: If the ending point and the starting point of the all resistance are the same points that combination is known as parallel combination.

If R₁,R₂ and R₃  are connected in parallel combination.

Then equivalent resistance  \frac{1}{R}= \frac{1}{R_1}+ \frac{1}{R_2}+\frac{1}{R_3}

Here R₁=7Ω and     R₂=3Ω

If R₁ and R₂  connected in series combination

Then equivalent resistance = (7+3) Ω

                                            =10Ω

If R₁ and R₂  connected in parallel combination

Then equivalent resistance =\frac{1}{(\frac{1}{7} +\frac{1}{3})} \Omega

                                              =\frac{21}{10} \Omega

5 0
3 years ago
Other questions:
  • How many weeks are in the regular NFL season?
    10·2 answers
  • What protists do not have definite shape
    7·1 answer
  • Flammability is an example of a _________ property.
    13·2 answers
  • A ball is thrown downward with an initial speed of 6m/s. the ball's velocity after 4 seconds is m/s. (g=-9.8m/s^2)
    5·1 answer
  • As you stand near a railroad track, a train passes by at a speed of 31.7 m/s while sounding its horn at a frequency of 218 Hz. W
    10·1 answer
  • Which statement best explains why an object appears green in sunlight?
    15·2 answers
  • Atoms of which elements form bonds without satisfying the octet rule?
    15·2 answers
  • ANYONE KNOW NUMBER 1?
    8·1 answer
  • If an object is placed 10cm in front of a converging lens that has a focal length of 15cm. What are the properties of the image?
    6·1 answer
  • What is the number of 0 mean​
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!