Answer:
ms⁻¹
Explanation:
= diameter of merry-go-round = 4 m
= radius of merry-go-round =
=
= 2 m
= moment of inertia = 500 kgm²
= angular velocity of merry-go-round before ryan jumps = 2.0 rad/s
= angular velocity of merry-go-round after ryan jumps = 0 rad/s
= velocity of ryan before jumping onto the merry-go-round
= mass of ryan = 70 kg
Using conservation of angular momentum



ms⁻¹
Answer: C.
Explanation:
For a parallel-plate capacitor where the distance between the plates is d.
The capacitance is:
C = e*A/d
You can see that the distance is in the denominator, then if we double the distance, the capacitance halves.
Now, the stored energy can be written as:
E = (1/2)*Q^2/C
Now you can see that in this case, the capacitance is in the denominator, then we can rewrite this as:
E = (1/2)*Q^2*d/(e*A)
e is a constant, A is the area of the plates, that is also constant, and Q is the charge, that can not change because the capacitor is disconnected.
Then we can define:
K = (1/2)*Q^2/(e*A)
And now we can write the energy as:
E = K*d
Then the energy is proportional to the distance between the plates, this means that if we double the distance, we also double the energy.
Answer:
The second one a part of it heats up Earth's land and water equally.
Explanation:
Hope this help!!!
Answer:
R2 = 300 Ohms
Explanation:
Let the two resistors be R1 and R2 respectively.
RT is the total equivalent resistance.
Given the following data;
R1 = 100 Ohms
RT = 75 Ohms
To find R2;
Mathematically, the total equivalent resistance of resistors connected in parallel is given by the formula;

Substituting into the formula, we have;

Cross-multiplying, we have;
75 * (100 + R2) = 100R2
7500 + 75R2 = 100R2
7500 = 100R2 - 75R2
7500 = 25R2
R2 = 7500/25
R2 = 300 Ohms
Answer:
Explanation:
Electrons are allowed "in between" quantized energy levels, and, thus, only specific lines are observed. <em>FALSE. </em>The specific lines are obseved because of the energy level transition of an electron in an specific level to another level of energy.
The energies of atoms are not quantized. <em>FALSE. </em>The energies of the atoms are in specific levels.
When an electron moves from one energy level to another during absorption, a specific wavelength of light (with specific energy) is emitted. <em>FALSE. </em>During absorption, a specific wavelength of light is absorbed, not emmited.
Electrons are not allowed "in between" quantized energy levels, and, thus, only specific lines are observed. <em>TRUE. </em>Again, you can observe just the transition due the change of energy of an electron in the quantized energy level
When an electron moves from one energy level to another during emission, a specific wavelength of light (with specific energy) is emitted. <em>TRUE. </em>The electron decreases its energy releasing a specific wavelength of light.
The energies of atoms are quantized. <em>TRUE. </em>In fact, the energy of all subatomic, atomic, and molecular particles is quantized.