Guessing you want the average speed. We can multiple each speed by the time we spent going that speed, and them all together and then divide by the total time we spent in traffic to get the average speed. We spent a total of 7.5 minutes in traffic, so average speed = (12*1.5+0*3.5+15*2.5)/7.5 = 7.4 m/s
The average velocity or displacement of a particle for the first time interval is <u>Δs / Δt = 6 cm/s.</u>
Solution:
As we know that displacement is calculated in centimeters and the unit of time is second.
The average velocity for the first interval [1,2] is given
Δs / Δt = s (t2) - s (t) / t2 - t1
Δs / Δt = 2sin2 π + 3cos 2 π - ( 2sin π + 3cos π ) / 2 - 1
Δs / Δt = 2(0) + 3(1) - 2(0) - 3 (-1) / 1
Δs / Δt = 6 cm/s
Thus the average velocity or displacement of a particle for the first time interval is Δs / Δt = 6 cm/s
If you need to learn more about displacement click here:
brainly.com/question/28370322
#SPJ4
The complete question is:
The displacement of a particle moving back and forth along a line is given by the following equation s(t) = 2sin π t + 3cos π t. Estimate the instantaneous velocity of the particle when t = 1
Answer:
The temperature rises by 0.52K
Explanation:
Detailed explanation and calculation is shown in the image below
Explanation:
We have,
Semimajor axis is
It is required to find the orbital period of a dwarf planet. Let T is time period. The relation between the time period and the semi major axis is given by Kepler's third law. Its mathematical form is given by :
G is universal gravitational constant
M is solar mass
Plugging all the values,
Since,
So, the orbital period of a dwarf planet is 138.52 years.