Answer:
T = 120.3 N
Explanation:
Since, the tension in the rope is acting against both the centripetal force and the weight of the stone. As both act downward towards center of the circle and tension acts towards point of support that is upward. So, tension will be equal to the sum of centripetal force and weight of the stone:
Tension = Centripetal Force + Weight of Stone
T = mv²/r + mg
where,
m = mass of stone = 5.31 kg
r = radius of circle = length of string = 2.99 m
g = 9.8 m/s²
Therefore,
T = (5.31 kg)(6.2 m/s)²/(2.99 m) + (5.31 kg)(9.8 m/s²)
T = 68.27 N + 52.03 N
<u>T = 120.3 N</u>
<h3>Question 1</h3>
Answer
option C) velocity
Explanation
acceleration = Δv ÷ Δt
<h3>Question 2</h3>
Answer
option C) m/s²
Explanation
Δv ÷ Δt
= m/s ÷ s
= m/s x 1/s
= m/s²
<h3>Question 3</h3>
Answer
option B) velocity has both direction and speed.
That is why velocity can be negative but speed can not and velocity is rate of change of displacement where as speed is rate of change of distance.
14 ms is required to reach the potential of 1500 V.
<u>Explanation:</u>
The current is measured as the amount of charge traveling per unit time. So the charge of electrons required for each current is determined as the product of current with time.
As two different current is passing at two different times, the net charge will be the different in current. So,
The electric voltage on the surface of cylinder can be obtained as the ratio of charge to the radius of the cylinder.
Here , q is the charge and R is the radius. As and R =17 cm = 0.17 m, then the voltage will be
The time is required to find to reach the voltage of 1500 V, so
So, 14 ms is required to reach the potential of 1500 V.