The atomic number gives you the number of protons element x has. Since the mass of protons and neutrons are almost similar(around 1 amu), the mass number can be thought of as the sum of protons and neutrons. so if element x whose atomic number is 40 has a mass number of 82, then we know that 42 of those must be neutrons.
Answer:
Make sure you're getting paid. Unpaid interships are a complete and total waste.
Explanation:
If you drop an object, it accelerates downward at 9.8 m/s2 (in the absence of air resistance). If instead, you throw it downward, its downward acceleration after release is 9.8 m/s2.
Acceleration is the rate at which an object's velocity with respect to time changes. They are vector quantities and accelerations. The direction of the net force acting on an object determines the direction of its acceleration. Uniform acceleration, non-uniform acceleration, and average acceleration are the three different forms of accelerated motions.
A free-falling object experiences a downward acceleration of 9.8 m/s/s (on Earth). This specific designation is given to the numerical value for an object in free fall because it is such an essential value. The longer an object is in free fall, the faster it descends toward the ground due to gravity. In actuality, an object's velocity rises by 9.8 m/s2, so it reaches 9.8 m/s by the time it begins to fall.
To know more about acceleration refer to: brainly.com/question/14468548
#SPJ4
In the 1970, the average American ate only 2 pounds of sugar a year. In 1970, we ate 123 pounds of sugar per year. Today, the average American consumes almost 152 pounds of sugar in one year. This is equal to 3 pounds (or 6 cups) of sugar consumed in one week!
Answer:
12900 W
24200 W
Explanation:
Given:
v₀ = 0 m/s
v = 1.3 m/s
t = 2.0 s
Find: a and Δx
v = at + v₀
(1.3 m/s) = a (2.0 s) + (0 m/s)
a = 0.65 m/s²
Δx = ½ (v + v₀) t
Δx = ½ (1.3 m/s + 0 m/s) (2.0 s)
Δx = 1.3 m
While accelerating:
Newton's second law:
∑F = ma
F − mg = ma
F = m (g + a)
F = (1500 kg + 400 kg) (9.8 m/s² + 0.65 m/s²)
F = 19855 N
Power = work / time
P = W / t
P = Fd / t
P = (19855 N) (1.3 m) / (2.0 s)
P ≈ 12900 W
At constant speed:
Newton's second law:
∑F = ma
F − mg = 0
F = mg
F = (1500 kg + 400 kg) (9.8 m/s²)
F = 18620 N
Power = work / time
P = W / t
P = Fd / t
P = Fv
P = (18620 N) (1.3 m/s)
P ≈ 24200 W