Answer:
At the maximum height of the vault
Explanation:
The formula for gravitational energy (GPE) is
GPE = mgh, where
m = the pole vaulter's mass
g = the acceleration due to gravity
h = the height above the ground
Since m and g are constant,
GPE ∝ h
The point of highest GPE is at the maximum height of the vault, just before he starts falling towards the ground.
Answer:
Vapor pressure of solution is 98.01 Torr
Explanation:
Colligative property. In this case, we apply the lowering vapor pressure.
ΔP = P° . Xm
P° - P' = Vapor pressure of pure solvent - Vapor pressure of solution = ΔP
Xm is the molar fraction for solute. We try to determine it:
Moles of solute / Total moles → Total moles = Solute moles + Solvent moles
10.3 g . 1mol / 154 g = 0.0669 moles of biphenyl
27.8 g . 1mol / 78 g = 2.32 moles of benzene
Total moles = 2.32 moles + 0.0669 moles = 2.3869 moles
Xm for solute = 0.0669 / 2.3869 = 0.028
Let's replace data:
100.84 Torr - P' = 100.84 Torr . 0.028
P' = - (100.84 Torr . 0.028 - 100.84Torr) = 98.01 Torr
Answer:
59.92 × 10²³ atoms are in 9.95 moles of iron
1.8 ×10²² molecules are in 0.03 moles of Carbon dioxide
1.19 moles are found in 7.20 x 10^23 atoms of platinum
Answer:
-) 3-bromoprop-1-ene
-) 2-bromoprop-1-ene
-) 1-bromoprop-1-ene
-) bromocyclopropane
Explanation:
In this question, we can start with the <u>I.D.H</u> (<em>hydrogen deficiency index</em>):

In the formula we have 3 carbons, 5 hydrogens, and 1 Br, so:

We have an I.D.H value of one. This indicates that we can have a cyclic structure or a double bond.
We can start with a linear structure with 3 carbon with a double bond in the first carbon and the Br atom also in the first carbon (<u>1-bromoprop-1-ene</u>). In the second structure, we can move the Br atom to the second carbon (<u>2-bromoprop-1-ene</u>), in the third structure we can move the Br to carbon 3 (<u>3-bromoprop-1-ene</u>). Finally, we can have a cyclic structure with a Br atom (<u>bromocyclopropane</u>).
See figure 1
I hope it helps!