Answer:
5.41 g
Explanation:
Considering:
Or,
Given :
For tetraphenyl phosphonium chloride :
Molarity = 33.0 mM = 0.033 M (As, 1 mM = 0.001 M)
Volume = 0.45 L
Thus, moles of tetraphenyl phosphonium chloride :
Moles of TPPCl = 0.01485 moles
Molar mass of TPPCl = 342.39 g/mol
The formula for the calculation of moles is shown below:
Thus,
Mass of TPPCl = 5.0845 g
Also,
TPPCl is 94.0 % pure.
It means that 94.0 g is present in 100 g of powder
5.0845 g is present in 5.41 g of the powder.
<u>Answer - 5.41 g</u>
Answer:
THE VOLUME OF THE BALLOON IS 1.45 L
Explanation:
At sea level:
Volume = 2 L
Pressure = 1 atm
Temperature = 12 °C
At 30000 ft altitude:
Pressure = 0.30 atm
Temperature = -55°C
Volume = unknown
Using the general gas formula:
P1 V1 / T1 = P2 V2 / T2
Re-arranging the formula by making V2 the subject of the equation, we have;
V2 = P1 V1 T2 / T1 P2
V2 = 1 * 2 * 12 / 0.30 * 55
V2 = 24 / 16.5
V2 = 1.45 L
The volume of the balloon at the temperature of -55 C and 0.30 atm is 1.45 L
75% i think it is consumers
25% i think it is producer
Given information : Sample of 
We need to find the moles of Chlorine in the given sample.
We can say that we need to find moles from the given atoms.
Relation between mole and atom is given by : 
Where
is Avogadro number.


On solving the above equation , atoms(unit) gets cancelled out and we get 0.0286 mol.
In the given sample the moles of Chlorine (Cl) is 0.0286 mol , so option A is correct.