Answer:
jjiooyfffffffffffcvģg5fffvgvvvhh
Explanation:
jhhhhuxjcififigigivigviigiggivi
Answer:
A
Explanation:
I believe it is negative 1.
Answer:
B) 0.32 %
Explanation:
Given that:

Concentration = 1.8 M
Considering the ICE table for the dissociation of acid as:-

The expression for dissociation constant of acid is:
![K_{a}=\frac {\left [ H^{+} \right ]\left [ {CH_3COO}^- \right ]}{[CH_3COOH]}](https://tex.z-dn.net/?f=K_%7Ba%7D%3D%5Cfrac%20%7B%5Cleft%20%5B%20H%5E%7B%2B%7D%20%5Cright%20%5D%5Cleft%20%5B%20%7BCH_3COO%7D%5E-%20%5Cright%20%5D%7D%7B%5BCH_3COOH%5D%7D)


Solving for x, we get:
<u>x = 0.00568 M</u>
Percentage ionization = 
<u>Option B is correct.</u>
electrons are arranged in shells around an atom's nucleus. Electrons closest to the nucleus will have the lowest energy.
Answer:
1 atm
Explanation:
Step 1: Write the balanced equation
NH₄OH(aq) ⇒ H₂O(l) + NH₃(g)
Step 2: Calculate the moles corresponding to 8 g of NH₄OH
The molar mass of NH₄OH is 35.04 g/mol.
8 g × 1 mol/35.04 g = 0.2 mol
Step 3: Calculate the moles of NH₃ formed from 0.2 moles of NH₄OH
The molar ratio of NH₄OH to NH₃ is 1:1. The moles of NH₃ formed are 1/1 × 0.2 mol = 0.2 mol
Step 4: Calculate the pressure of 0.2 moles of NH₃ in a container of 5.00 L at 25 °C (298 K)
We will use the ideal gas equation.
P × V = n × R × T
P = n × R × T / V
P = 0.2 mol × 0.0821 atm.L/mol.K × 298 K / 5.00 L
P = 1 atm