Answer:
White dwarfs are likely to be much more common. The number of stars decreases with increasing mass, and only the most massive stars are likely to complete their lives as black holes. There are many more stars of the masses appropriate for evolution to a white dwarf.
A beam of laser is directed at a reflecting surface put on the moon when the beam of laser is reflected a receiver on the each measure the time since the beam was sent till it was received. Laser is simply light so it has constant velocity in vacuum ~ air (c = 3 x 10^8 m/s)
to find the distance:
t : time measured between launching the beam and receiving it
d : distance
d = ct
Answer:
<u>Matter is a substance that has inertia and occupies physical space. According to modern physics, matter consists of various types of particles, each with mass and size.Matter can exist in several states, also called phases. The three most common states are known as solid, liquid and gas.</u><u>Matter is the Stuff Around You</u><u> </u><u>o</u><u>r</u><u> </u><u>Atoms and compounds are all made of very small parts of matter. Those atoms go on to build the things you see and touch every day. Matter is defined as anything that has mass and takes up space (it has volume).</u><u>Solid ice, water and steam are few examples of matter touched in everyday life. Subatomic particles are also considered as matter.</u>
Answer:
The temperature must the ring be heated so that the sphere can just slip through is 106.165 °C.
Explanation:
For brass:
Radius = 1.3590 cm
Initial temperature = 23.0 °C
The sphere of radius 1.3611 cm must have to slip through the brass. Thus, on heating the brass must have to attain radius of 1.3611 cm
So,
Δ r = 1.3611 cm - 1.3590 cm = 0.0021 cm
<u>The linear thermal expansion coefficient of a metal is the ratio of the change in the length per 1 degree temperature to its length.</u>
<u>Thermal expansion for brass = 19×10⁻⁶ °C⁻¹</u>
Thus,

Also,

So,

Solving for final temperature as:

<u>Final temperature = 106.165 °C</u>