The final velocity is 5.87 m/s
<u>Explanation:</u>
Given-
mass,
= 72 kg
speed,
= 5.8 m/s
,
= 45 kg
,
= 12 m/s
Θ = 60°
Final velocity, v = ?
Applying the conservation of momentum:
X
+
X
= (
+
) v
72 X 5.8 + 45 X 12 X cos 60° = (72 + 45) v
v = 417.6 + 540 X 
v = 417.6 + 
v = 5.87 m/s
The final velocity is 5.87 m/s
Not sure.can you give me a clue?
root mean square<span>= square root of ( 3RT/M)
R = 8.314 J/K/mole
T = 25 + 273 = 298 K
M = molecular mas of N2 in kg = 28 X 10^-3 kg
put values...
</span><span> root mean square</span> = square root of ( 3 X 8.314 X 298/28 X 10^-3)
= square root of ( 265454.143)
= 515.2 m/s
so option A is right
hope this helps
<h3>No:1</h3>
The object is moving with constant or uniform acceleration and in average speed
<h3>No:-2</h3>
The object is de accelerating
<h3>No:-3</h3>
The object deaccelerated and came to rest so fast.
<h3>No:-4</h3>
The object moves slowly first then accelerated.
<h3>No:-5</h3>
The object accelerated at first so fast then move with constant acceleration then again accelerated .
Answer:
Option D, only on the portion of the Earth facing directly toward the Moon
Explanation:
Tides are caused by the gravitational pull of moon. The part of earth that faces the moon experiences the highest gravitational force and hence the high tides will occur in this regions only. The regions that do not faces the moon experiences low tides. It is the gravity of moon that attracts the ocean water towards itself.
Hence, Option D is correct