Answer:
The acceleration is 2 m/s2.
Explanation:
We calculate the acceleration (a), with the data of mass (m) and force (F), through the formula:
F = m x a ---> a= F/m
a = 40 N/20 kg <em> 1N= 1 kg x m/s2</em>
a= 40 kgx m/s2/ 20 kg
<em>a= 2 m/s2</em>
Answer:
E = 2.5 x 10⁻¹⁴ J
Explanation:
given,
diameter = 1.33 x 10⁻¹⁴ m
mass = 6.64 x 10⁻²⁷ kg
wavelength is equal to diameter
de broglie wavelength equal to diameter



v = 7.5 x 10⁶ m/s
Kinetic energy is equal to


E = 2.5 x 10⁻¹⁴ J
The first rule of vectors is that the horizontal and vertical components are separate. Disregarding air resistance, the only thing we have to worry about is gravity.
The appropriate suvat to use for the vertical component is v = u +at
I will take a to be -9.81, you may have to change it to be 10 if your qualification likes g to be 10.
v = 30 + (-9.81x2)
v = 30 - 19.62
=10.38m/s
Therefore we know that after 2.0 s the vertical component will be 10.38ms^-1, ie 10m/s as the answers given are all to 2sf.
The horizontal component is completely separate to the vertical component and since there is no air resistance, it will remain constant throughout the projectiles trajectory. Therefore it will remain at 40ms^-1.
Combining this together we get:
(1) vx=40m/s and vy=10m/s
Explanation:
PRIMERO ENCUENTRAS EL PESO DEL PARACAIDISTA
= 65 kg(
) = 637 N
CON LA FÓRMULA DE LA ENERGÍA POTENCIAL
U = 637 N(6000 m - 3500 m) = 1592500 J