International Disaster Management or FEMA
A radio station broadcast on a frequency of 3.7 mhz what is the energy of the radio wave A radio station broadcasts its programmes at a wavelength of 500 m. Find the frequency of the radiowaves transmitted by the radio station, if the speed of radiowaves in air is 3 x 108 m/s. Ans: 6 x 10 Hz
<h3>What is
radio station ?</h3>
Radio broadcasting is the act of sending audio (sound), occasionally together with accompanying metadata, across radio waves to radio receivers used by the general public. Unlike satellite radio, which uses a satellite in Earth's orbit, terrestrial radio broadcasting uses a land-based radio station to transmit radio waves. The listener needs a broadcast radio receiver to hear the material (radio). A radio network with which stations frequently have affiliations provide content in a standard radio format, whether through broadcast syndication, simulcasting, or both. Radio stations use a variety of modulations to transmit their signals, including FM (frequency modulation), which is an older analog audio standard, and AM (amplitude modulation).
To learn more about radio station from the given link:
brainly.com/question/26439029
#SPJ4
Answer:
(a) = -0.16%
(b) = smaller
Explanation:
given
power = 460 W
potential difference = 120 V
(a) what percentage will its heat output drop if the applied potential difference drops to 110 V ?
we know
.....................(i)
we need to find change in power
..............(ii)
from equations we get



(b)
if we increase temperature resistance will increase and decrease with decrease in temperature and we know power is inversely proportional to resistance so if potential decrease and it would cause drop in power
and due to this increment of heating power resistance will decrease so actual drop in the power would be smaller
Answer: 60m/s
Explanation:
The wavespeed is the distance covered by the wave in one second. It is measured in metre per second, and represented by the symbol V
Wavespeed (V) = Frequency F x wavelength λ
i.e V = F λ
In the first case:
Wavespeed = 30 m/s
Frequency of sound = 6Hz
Wavelength = 5m
In the second case:
Wavespeed = ?
Frequency of sound = (2x 6Hz = 12Hz)
Wavelength = 5m (remains constant)
Apply V = F λ
Wavespeed = 12 Hz x 5m
Wavespeed = 60m/s
Therefore, when frequency is doubled, the speed is also doubled. Thus, the new speed of the wave is 60m/s
We are given the mass of an <span>aluminum sculpture which is 145 kg and a horizontal force equal to 668 Newtons. The coefficient of friction can be determined by dividing the horizontal force by the weight of the object. In this case, 668 N / 145 * 9.8 equal to coeff of friction of 0.47</span>