Answer:
the answer would be a i did the test
Explanation:
Answer : The correct option is, +91 kJ/mole
Solution :
The balanced cell reaction will be,

Here copper (Cu) undergoes oxidation by loss of electrons, thus act as anode. Lead (Pb) undergoes reduction by gain of electrons and thus act as cathode.
First we have to calculate the standard electrode potential of the cell.
![E^0_{[Pb^{2+}/Pb]}=-0.13V](https://tex.z-dn.net/?f=E%5E0_%7B%5BPb%5E%7B2%2B%7D%2FPb%5D%7D%3D-0.13V)
![E^0_{[Cu^{2+}/Cu]}=+0.34V](https://tex.z-dn.net/?f=E%5E0_%7B%5BCu%5E%7B2%2B%7D%2FCu%5D%7D%3D%2B0.34V)

![E^0_{cell}=E^0_{[Pb^{2+}/Pb]}-E^0_{[Cu^{2+}/Cu]}](https://tex.z-dn.net/?f=E%5E0_%7Bcell%7D%3DE%5E0_%7B%5BPb%5E%7B2%2B%7D%2FPb%5D%7D-E%5E0_%7B%5BCu%5E%7B2%2B%7D%2FCu%5D%7D)

Now we have to calculate the standard Gibbs free energy.
Formula used :

where,
= standard Gibbs free energy = ?
n = number of electrons = 2
F = Faraday constant = 96500 C/mole
= standard e.m.f of cell = -0.47 V
Now put all the given values in this formula, we get the Gibbs free energy.

Therefore, the standard Gibbs free energy is +91 kJ/mole
Explanation:
Conduction is a form of heat transfer between one body and another. It usually occurs when a warmer object is in contact with a cooler one. Heat generally flows from a region of high temperature to a place at a lower temperature.
- Conduction is very pronounced in solid bodies.
- The heat transfer causes a net transfer of the average kinetic energy of one body to the other.
- Some examples are: heating of iron by a hotter metallic body, the pot hand getting hotter as cooking continues, cooling of ice by touching it.
Answer:
Weak bonds require less energy to form than strong bonds
Explanation:
According to Coulomb's law, the force between two species is inversely proportional to the distance between them. That said, the bigger the atoms are, the greater the bond length should be to form a molecule.
As a result, for a greater bond length, the attraction force is lower than for a shorter bond length. This implies that large atoms would form weak bonds and small atoms would form strong bonds.
Bond energy is defined as the amount of energy required to break the bond. If a bond is weak, it would require a low amount of energy to break it. This is also true for energy of formation, as it's the same process taking place in the opposite direction.
The answer to 4 is A.
The answer to 5 is C.