Answer:
On treatement of 2 -with hydrogen gas and lindlar catalyst, the major product obtained is cis-2butene.
Physical Properties: Sodium bicarbonate is an odorless, white crystalline solid or fine powder. It has a slightly alkaline taste. Its density is 2.20 g mL-1 and it decomposes in temperatures above 50 ºC. The decomposition yields to sodium carbonate. It is highly soluble in water and poorly soluble in acetone and methanol. It is insoluble in ethanol.
Chemical Properties: Sodium bicarbonate is an amphoteric compounds, it means the compound has a character acids an basic at the same time. It is highly soluble in water, resulting in a slighty alkaline solution.
i hope this part helps i will continue to research on Toothpaste's properties
Answer:
Natural gas combustion equation:
CH4 + O2 ==> CO2 + 2 H2O + HEAT
Octane or oil combustion equation:
2C8H18 + 25 O2 ===> 16CO2 + 18 H2O.
If these fuels were replaced by self-sustaining energy sources, the contamination of the environment would be less, since their combustion generates toxic compounds that damage the ozone layer, promoting the greenhouse effect, increasing the Earth's temperature and also promoting the increase in the passage of ultraviolet radiation.
Explanation:
The combustion reactions are exothermic, and irreversible, they can be complete and incomplete combustions.
They always consist of oxygen as a reagent and water and carbon dioxide as a product (complete), in the case of the incomplete the difference is that the products vary and there may be waste or chemical compounds that failed to burn.
Molar mass is the mass of 1 mol of substance.
Molar masses of compounds can be calculated by the sum of the products of molar masses of individual atoms by number of corresponding individual atoms.
Compound formula is C₉H₈O₄
the molar masses of the atoms making up the compound
C - 12 g/mol x 9 C = 108
H - 1 g/mol x 8 H = 8
O - 16 g/mol x 4 O = 64
therefore molar mass of aspirin = 108 + 8 + 64 = 180 g/mol
answer is 3.180
Answer:
Scientists seek to eliminate all forms of bias from their research. However, all scientists also make assumptions of a non-empirical nature about topics such as causality, determinism and reductionism when conducting research. Here, we argue that since these 'philosophical biases' cannot be avoided, they need to be debated critically by scientists and philosophers of science.
Explanation:
Scientists are keen to avoid bias of any kind because they threaten scientific ideals such as objectivity, transparency and rationality. The scientific community has made substantial efforts to detect, explicate and critically examine different types of biases (Sackett, 1979; Ioannidis, 2005; Ioannidis, 2018; Macleod et al., 2015). One example of this is the catalogue of all the biases that affect medical evidence compiled by the Centre for Evidence Based Medicine at Oxford University (catalogueofbias.org). Such awareness is commonly seen as a crucial step towards making science objective, transparent and free from bias.