1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Eduardwww [97]
3 years ago
11

A fighter jet accelerates from 10 m/s to 75 m/s in 7.0 s. The acceleration of the jet is

Physics
1 answer:
liraira [26]3 years ago
4 0
Acceleration = final velocity - inital / time
a = 75-10 / 7
a = 65 / 7
a = 9.29 m/s^2

You might be interested in
The total potential and kinetic energy of the particles in an object is called
bekas [8.4K]
It can also be called the thermal kinetic energy. The internal energy of a system is the total thermal kinetic energy and thermal potential energy of all its atoms and molecules. The Kinetic Theory of Matter is explains the kinetic energy of particles in an object.
3 0
3 years ago
Read 2 more answers
PLEASE SOLVE QUICKLY!!!<br> Solve for A, B, and C from graph
hram777 [196]

A = 59.35cm

B = 196.56g

C = 74.65g

<u>Explanation:</u>

We know,

x = \frac{L}{\frac{W}{F} +1}

and L = x+y

1.

Total length, L = 100cm

Weight of Beam, W = 71.8g

Center of mass, x = 49.2cm

Added weight, F = 240g

Position weight placed from fulcrum, y = ?

L-y = \frac{L}{\frac{W}{F}+1 } \\100 - y = \frac{100}{\frac{71.8}{49.2}+1 } \\100 - y = \frac{100}{1.46+1}\\\\100 - y = \frac{100}{2.46} \\100-y = 40.65\\\\y = 59.35cm

Therefore, position weight placed from fulcrum is 59.35cm

2.

Total length, L = 100cm

Center of mass, x = 47.8 cm

Added weight, F = 180g

Position weight placed from fulcrum, y = 12.4cm

Weight of Beam, W = ?

47.8 = \frac{100}{\frac{W}{180}+1 }\\\47.8  = \frac{100}{\frac{W+180}{180} } \\\\47.8 = \frac{100 X 180}{W+180}\\ \\47.8W + 47.8 X 180 = 18000\\47.8W  = 18000 - 8604\\W = \frac{9396}{47.8}\\ W = 196.56g

Therefore, weight of the beam is 196.56g

3.

Total length, L = 100cm

Center of mass, x = 50.8 cm

Position weight placed from fulcrum, y = 9.8cm

Weight of Beam, W = 72.3g

Added weight, F = ?

50.8 = \frac{100}{\frac{72.3}{F}+1 }\\\ 50.8  = \frac{100}{\frac{72.3+F}{F} } \\\\50.8 = \frac{100 X F}{72.3+F}\\ \\50.8 X 72.3 + 50.8 X F = 100F\\\\3672.84 = 100F-50.8F\\3672.84 = 49.2F\\F = 74.65g

Therefore, Added weight F is 74.65g

A = 59.35cm

B = 196.56g

C = 74.65g

4 0
3 years ago
A stone is thrown vertically upward with a speed of 18 m/s. (a) How long does it take the stone to reach a height of 11 m? (b) h
bagirrra123 [75]

Answer:

a) It takes the stone 0.7743 s to reach a height of 11 m for the first time on its way up and 2.899 s to reach again that height on its way down.

b) At t = 0.7743 s the velocity is 10.41 m/s and at t = 2.899 s the velocity is -10.41 m/s.

c) There are two answers because the stone reaches the height of 11 m one time on its way up and one more time again on its way down.

Please, see the attached figures and the explanation for a description of the figures.

Explanation:

Hi there!

The equations for the height and velocity of the stone are as follows:

y = y0 + v0 · t + 1/2 · g · t²

v = v0 + g · t

Where:

y = height

y0 = initial height

v0 = initial velocity

t = time

g = acceleration due to gravity (-9.8 m/s² considering the upward direction as positive)

v = velocity at time t

a) Let´s calculate the time it takes the stone to reach a height of 11 m. The origin of the frame of reference is at the throwing point so that y0 = 0:

y = y0 + v0 · t + 1/2 · g · t²        

11 m = 18 m/s · t - 1/2 · 9.8 m/s² · t²    

0 = -4.9 m/s² · t² + 18 m/s · t - 11 m

Solving the quadratic equation:

t = 0.7743 s and t = 2.899 s

(Notice that I have used more significant figures to avoid error by rounding)

The stone will be two times at a height of 11 m, one on its way up (at 0.7743 s) and one on its way down  (at 2.899 s). Then, it takes the stone 0.7743 s to reach a height of  11 m for the first time.

b)  Let´s use the equation of velocity:

v = v0 + g · t

at t = 0.77443 s

v = 18 m/s - 9.8 m/s² · 0.77443 s

v = 10.41 m/s

at t = 2.899 s

v = 18 m/s - 9.8 m/s² · 2.899 s

v = - 10.41 m/s

(Both velocities have to be of the same magnitude but of different sign, that´s why I haven´t rounded the time.)

c) There are two answers because the stone reaches the height of 11 m one time on its way up and one more time again on its way down. On its way up, the velocity is 10.41 m/s and on its way down it is -10.41 m/s.

Figures

The functions to plot are the following:

height in function of time (figure 1, x-axis: time. y-axis: height)

y = -4.9t² + 18t

velocity in function of time (figure 2, x-axis: time. y-axis velocity)

v = -9.8t + 18

Acceleration in function of time (figure 3, x-axis: time. y-axis: acceleration)

a = -9.8

5 0
4 years ago
A wire delivers 12.0 C of charge in 4.0 s. What is the current in the wire? 3.0 A 8.0 A 16 A 48 A
const2013 [10]
3.0 A i got it off Quizlet and there usually always right lol can't submit tho my answers to short.... Dot dot dot
5 0
4 years ago
Read 2 more answers
Why do you think that the speeds of comets increase as they near the sun
Lina20 [59]
Because the force of gravity attracts the comets towards the sun
6 0
4 years ago
Other questions:
  • A motorboat and a pwc are meeting head-on. which one is the stand-on vessel?
    11·1 answer
  • ANSWER QUICKLY!!!!!
    7·2 answers
  • How are desert plants adapted to their climate? Describe the climate and give specific examples
    6·1 answer
  • Magnetic reversals have helped to support
    10·2 answers
  • Take one jar with salt water and another with pure water .put an egg into both jars. In which the jar egg floated over the liqui
    7·1 answer
  • Plz help me plzzz. I'm begging you
    10·1 answer
  • Can someone answer this multiple choice, and ignore the one I accidentally touched
    12·2 answers
  • 17. Suppose you attach the object with mass m to a vertical spring originally at rest, and let it bounce up and down. You releas
    5·1 answer
  • A circuit contains four resistors connected in series. What happens to the equivalent resistance when one of the resistors is re
    11·1 answer
  • Velocity can best be described by which of the following statements?
    7·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!