1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Stolb23 [73]
3 years ago
7

Which of these tools is used to measure temperature?

Physics
2 answers:
frozen [14]3 years ago
5 0
The answer is obviously D
Feliz [49]3 years ago
3 0

Answer:

D a thermometer

Explanation: It measures and track Celcius and Feirinheit.

You might be interested in
A projectile is fired over level ground with an initial velocity that has a vertical component of 20 m/s and a horizontal compon
Anettt [7]
First of all, let's write the equation of motions on both horizontal (x) and vertical (y) axis. It's a uniform motion on the x-axis, with constant speed v_x=30 m/s, and an accelerated motion on the y-axis, with initial speed v_y=20 m/s and acceleration g=9.81 m/s^2:
S_x(t)=v_xt
S_y(t)=v_y t- \frac{1}{2} gt^2
where the negative sign in front of g means the acceleration points towards negative direction of y-axis (downward).

To find the distance from the landing point, we should find first the time at which the projectile hits the ground. This can be found by requiring
S_y(t)=0
Therefore:
v_y t -  \frac{1}{2}gt^2=0
which has two solutions:
t=0 is the time of the beginning of the motion,
t= \frac{2 v_y}{g} = \frac{2\cdot 20 m/s}{9.81 m/s^2}=4.08 s is the time at which the projectile hits the ground.

Now, we can find the distance covered on the horizontal axis during this time, and this is the distance from launching to landing point:
S_x(4.08 s)=v_x t=(30 m/s)(4.08 s)=122.4 m
4 0
3 years ago
Two satellites, A and B are in different circular orbits
jek_recluse [69]

Answer:

The ratio of the orbital time periods of A and B is \frac{1}{2}

Solution:

As per the question:

The orbit of the two satellites is circular

Also,

Orbital speed of A is 2 times the orbital speed of B

v_{oA} = 2v_{oB}        (1)

Now, we know that the orbital speed of a satellite for circular orbits is given by:

v_{o} = \farc{2\piR}{T}

where

R = Radius of the orbit

Now,

For satellite A:

v_{oA} = \farc{2\piR}{T_{a}}

Using eqn (1):

2v_{oB} = \farc{2\piR}{T_{a}}           (2)

For satellite B:

v_{oB} = \farc{2\piR}{T_{b}}              (3)

Now, comparing eqn (2) and eqn (3):

\frac{T_{a}}{T_{b}} = \farc{1}{2}

6 0
3 years ago
A series AC circuit contains a resistor, an inductor of 150 mH, a capacitor of 5.00 mF, and a generator with DVmax 5 240 V opera
yanalaym [24]

Given:

Inductance, L = 150 mH

Capacitance, C = 5.00 mF

\Delta V_{max} = 240 V

frequency, f = 50Hz

I_{max} = 100 mA

Solution:

To calculate the parameters of the given circuit series RLC circuit:

angular frequency, \omega =  2\pi f = 2\pi \times50 = 100\pi

a). Inductive reactance,  X_{L} is given by:

\X_{L} = \omega L = 100\pi \times 150\times 10^{-3} = 47.12\Omega

X_{L} = 47.12\Omega 

b). The capacitive reactance,  X_{C} is given by:

\X_{C} = \frac{1}{\omega C} = \frac{1}{2\pi fC} = \frac{1}{2\pi \times 50\times 5.00\times 10^{-3}} = 0.636\Omega

X_{C} = 0.636\Omega

c). Impedance, Z = \frac{\Delta V_{max}}{I_{max}} = \frac{240}{100\times 10^{-3}} = 2400\Omega

Z = 2400\Omega

d). Resistance, R is given by:

Z = \sqrt {R^{2} + (X_{L} - X_{C})}

2400^{2} = R^{2} + (47.12 - 0.636)^{2}

R = \sqrt {5757839.238}

R = 2399.5\Omega

e). Phase angle between current and the generator voltage is given by:

tan\phi = \frac{X_{L} - X_{C}}{R}

\phi =tan^{-1}( \frac{X_{L} - X_{C}}{R})

\phi =tan^{-1}( \frac{47.12 - 0.636}{2399.5}) = tan^{-1}{0.0.01937}

\phi = 1.11^{\circ}

5 0
3 years ago
The International Space Station has a mass of 1.8 × 105 kg. A 70.0-kg astronaut inside the station pushes off one wall of the st
Aleonysh [2.5K]

Answer:

a = 5.83 \times 10^{-4} m/s^2

Explanation:

Since the system is in international space station

so here we can say that net force on the system is zero here

so Force by the astronaut on the space station = Force due to space station on boy

so here we know that

mass of boy = 70 kg

acceleration of boy = 1.50 m/s^2

now we know that

F = ma

F = 70(1.50) = 105 N

now for the space station will be same as above force

F = ma

105 = 1.8 \times 10^5 (a)

a = \frac{105}{1.8 \times 10^5}

a = 5.83 \times 10^{-4} m/s^2

3 0
3 years ago
The Kelvin scale is the most common temperature scale used in what
dalvyx [7]
It's mostly used in CHEMICAL PROCESSES.
7 0
3 years ago
Read 2 more answers
Other questions:
  • It is possible to hang from a bare power line and not get electrocuted as long as you are not touching the ground, or any conduc
    11·1 answer
  • A car travels straight for 20 miles on a road that is 30° north of east. What is the east component of the car’s displacement to
    12·2 answers
  • The charge per unit length on a long, straight filament is-92.0 μC/m. (a) Find the electric field 10.0 cm from the filament, whe
    10·1 answer
  • Which of the following distances is the longest?a. 0.006 kilometers
    5·1 answer
  • A trolley has a mass of 1.2 kg and a speed of 4.5 m/s. The trolley crashes into a stationary trolley of mass 0.8 kg. On impact t
    12·1 answer
  • An ant crawls along a sidewalk with a velocity of 0.1 m/s in a direction that is 45° relative to edge of the sidewalk. If it has
    14·1 answer
  • Any one watch SerieS here
    8·2 answers
  • As you enter the lab, you find two bottles labeled "concentrated ammonium phosphate." In one paragraph, using your own words, de
    5·1 answer
  • Which of the following statements is
    15·2 answers
  • Which phrase describes an irregular galaxy?
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!