1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
k0ka [10]
3 years ago
14

A very long insulating cylinder has radius R and carries positive charge distributed throughout its volume. The charge distribut

ion has cylindrical symmetry but varies with perpendicular distance from the axis of the cylinder. The volume charge density is rho(r)=α(1−r/R), where α is a constant with units C/m^3 and r is the perpendicular distance from the center line of the cylinder.
1. Derive an expression, in terms of α and R, for E(r), the electric field as a function of r.
2. Do this for rR.
3. Do your results agree for r=R?
Physics
1 answer:
blsea [12.9K]3 years ago
4 0

Answer:

1.E(r) = \frac{\alpha}{4\pi \epsilon_0}(2 - \frac{r}{R})

2.E(r) = \frac{1}{4\pi \epsilon_0}\frac{\alpha R}{r}

3.The results from part 1 and 2 agree when r = R.

Explanation:

The volume charge density is given as

\rho (r) = \alpha (1-\frac{r}{R})

We will investigate this question in two parts. First r < R, then r > R. We will show that at r = R, the solutions to both parts are equal to each other.

1. Since the cylinder is very long, Gauss’ Law can be applied.

\int {\vec{E}} \, d\vec{a} = \frac{Q_{enc}}{\epsilon_0}

The enclosed charge can be found by integrating the volume charge density over the inner cylinder enclosed by the imaginary Gaussian surface with radius ‘r’. The integration of E-field in the left-hand side of the Gauss’ Law is not needed, since E is constant at the chosen imaginary Gaussian surface, and the area integral is

\int\, da = 2\pi r h

where ‘h’ is the length of the imaginary Gaussian surface.

Q_{enc} = \int\limits^r_0 {\rho(r)h} \, dr = \alpha h \int\limits^r_0 {(1-r/R)} \, dr = \alpha h (r - \frac{r^2}{2R})\left \{ {{r=r} \atop {r=0}} \right. = \alpha h (\frac{2Rr - r^2}{2R})\\E2\pi rh = \alpha h \frac{2Rr - r^2}{2R\epsilon_0}\\E(r) = \alpha \frac{2R - r}{4\pi \epsilon_0 R}\\E(r) = \frac{\alpha}{4\pi \epsilon_0}(2 - \frac{r}{R})

2. For r> R, the total charge of the enclosed cylinder is equal to the total charge of the cylinder. So,

Q_{enc} = \int\limits^R_0 {\rho(r)h} \, dr = \alpha \int\limits^R_0 {(1-r/R)h} \, dr = \alpha h(r - \frac{r^2}{2R})\left \{ {{r=R} \atop {r=0}} \right. = \alpha h(R - \frac{R^2}{2R}) = \alpha h\frac{R}{2} \\E2\pi rh = \frac{\alpha Rh}{2\epsilon_0}\\E(r) = \frac{1}{4\pi \epsilon_0}\frac{\alpha R}{r}

3. At the boundary where r = R:

E(r=R) = \frac{\alpha}{4\pi \epsilon_0}(2 - \frac{r}{R}) = \frac{\alpha}{4\pi \epsilon_0}\\E(r=R) = \frac{1}{4\pi \epsilon_0}\frac{\alpha R}{r} = \frac{\alpha}{4\pi \epsilon_0}

As can be seen from above, two E-field values are equal as predicted.

You might be interested in
Two astronauts of mass 100 kg are 2 m apart in outer space. What is the
fredd [130]

The force of gravity between the astronauts is 1.67\cdot 10^{-7}N

Explanation:

The magnitude of the gravitational force between two objects is given by:

F=G\frac{m_1 m_2}{r^2}

where :

G=6.67\cdot 10^{-11} m^3 kg^{-1}s^{-2} is the gravitational constant

m_1, m_2 are the masses of the two objects

r is the separation between them

In this problem, we have two astronauts, whose masses are:

m_1 = 100 kg\\m_2 = 100 kg

While the separation between the astronauts is

r = 2 m

Substituting into the equation, we can find the gravitational force between the two astronauts:

F=\frac{(6.67\cdot 10^{-11})(100)(100)}{2^2}=1.67\cdot 10^{-7}N

Learn more about gravitational force:

brainly.com/question/1724648

brainly.com/question/12785992

#LearnwithBrainly

4 0
3 years ago
Read 2 more answers
A police officer is parked by the side of the road, when a speeding car travelling at 50 mi/hrpasses. The police car immediately
Blababa [14]

Answer:

a) time taken to catch up with speeding car is 12.25 secs

b) the police car will travel 273.8 m to catch up with the speeding car

Explanation:

Given that;

speed of car V_{c} = 50 mi/hr = 22.352 m/s

acceleration of police car = 10 mi/hr = 4.47 m/s²

V_{f}  = 70 mi/hr = 31.29 m/s

Now time taken to reach maximum speed is t₁

so

V_{f} =  V_{i} + at₁

we substitute

31.29 = 0 + 4.47t₁

t₁ = 31.29 / 4.47

t₁  = 7 sec

now

d₁ = 0 + 1/2 × at₁²

d₁ = 0 + 1/2 × 0 + 4.47×(7)²

d₁ = 109.5 m

so distance travelled by the speeding car in time t₁  will be

d_{c} = V_{c} × t₁

we substitute

d_{c} = 22.352 × 7

d_{c}  = 156.46 m

now distance between polive car and speeding car

Δd =  d_{c} - d₁

Δd = 156.46 - 109.5

Δd = 46.96 m

time taken to cover Δd will be

t₂ = Δd / ( V_{f} - V_{c} )

t₂ = 46.96 / ( 31.29 - 22.352 )

t₂ = 46.96 / 8.938

t₂ = 5.25 sec

distance travelled by the police in time t₂ will be

d₂ = V_{f} × t₂

d₂ = 31.29 × 5.25

d₂ = 164.3 m

a) How long will it take before the officer catches up to the speeding car;

time taken to catch up with speeding car;

t = t₁ + t₂

t = 7 + 5.25

t = 12.25 secs

Therefore, time taken to catch up with speeding car is 12.25 secs

b)  how far will it have travelled in order to do so;

distance = d₁ + d₂

distance = 109.5 + 164.3

distance = 273.8 m

Therefore, the police car will travel 273.8 m to catch up with the speeding car

6 0
3 years ago
How much work will a machine with a power rating of 1.1 × 103 watts do in 2.0 hours?
lyudmila [28]

Answer:

D.

Explanation:

8.1X10 to the power of 6 Joules.

7 0
3 years ago
Read 2 more answers
What is the half-life of a compound if 75 percent of a given sample of the compound decomposes in 60 min? assume first-order kin
LenKa [72]
The amount left of a given substance can be calculated through the equation,
                                              A = (A0) x 0.5^n/h
From the given scenario, 
                                           A/A0 = 0.75 = 0.5*(60/h)
The value of h from the equation is 144.565 minutes. 
6 0
4 years ago
sa është syprina e gjurmës të këmbës të njeriut nëse njeriu ri në këmbë pa lëvizur dhe ka masë prej 84kg shtypja është 16.8pa​
gogolik [260]
I can’t understand that-
8 0
3 years ago
Other questions:
  • A: acne <br> B : heart disease <br> C: sickle cell anemia <br> D : type 1 diabetes
    15·2 answers
  • How does the ringing sound of a telephone travels from the phone to your ear
    13·2 answers
  • Please could someone explain this.
    8·1 answer
  • A machine carries a 100kg cargo to a boat at a rate of 10m/s2. The distance between the ground to the boat is 50ft. If the machi
    6·1 answer
  • 6. Why are there some areas of the country where wind power is not the best option? Explain.
    11·2 answers
  • . Which of the following is NOT a property of water? A. Ability to dissolve many substances B. Constant volume upon freezing C.
    14·2 answers
  • A starter pistol is fired 150m away from the spectators who hear the gun 0.5s after they see it fired. How fast does sound trave
    8·1 answer
  • I need help plz<br> Help meh
    9·2 answers
  • If a school bus moves with the speed of 72km/hr, how many meters does it cover in one hour?
    6·2 answers
  • How could you prove that
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!